572 research outputs found

    Screening for Parkinson’s Disease with Response Time Barriers: A Pilot Study

    Get PDF
    Background: Although significant response time deficits (both reaction time and movement time) have been identified in numerous studies of patients with Parkinson’s disease (PD), few attempts have been made to evaluate the use of these measures in screening for PD. Methods: Receiver operator characteristic curves were used to identify cutoff scores for a unitweighted composite of two choice response tasks in a sample of 40 patients and 40 healthy participants. These scores were then cross-validated in an independent sample of 20 patients and 20 healthy participants. Results: The unit-weighted movement time composite demonstrated high sensitivity (90%) and specificity (90%) in the identification of PD. Movement time was also significantly correlated (r = 0.59, p \u3c 0.025) with the motor score of the Unified Parkinson’s Disease Rating Scale (UPDRS). Conclusions: Measures of chronometric speed, assessed without the use of biomechanically complex movements, have a potential role in screening for PD. Furthermore, the significant correlation between movement time and UPDRS motor score suggests that movement time may be useful in the quantification of PD severity

    Electrode Heating in a Wire-to-Plane Arc

    Get PDF
    A steady wire-to-plane electric discharge has been modeled in a prolate spheroidal coordinate system with the wire shape taken as a hyperboloid of revolution. A set of continuum conservation equations for the charged particle densities and temperatures together with Poisson’s equation for the self-consistent electric potential describe the steady electric discharge process. These equations have been solved numerically to obtain ion and electron densities, temperature distribution, and electrode heat fluxes. Particle densities show the main body of the arc is quasineutral bounded by space charge sheaths at both electrodes. The temperature is greatest in a region around the discharge axis about one-third of the distance from the wire to the plane. Strong electric fields are concentrated in the electrode sheaths. The heat flux to the wire is sharply peaked near the tip but on the plane it decays slowly away from the discharge axis. The knowledge of heat transfer from the arc to the electrodes is useful in determining arc parameters that govern the ball formation process used in wire bonding of microelectronic semiconductor chips as well as welding processes

    Breakdown of a Wire-to-Plane Discharge: Transient Effects

    Get PDF
    A wire-to-plane discharge during the early phases of breakdown has been studied. The discharge has been modeled in a prolate spheroidal coordinate system with the wire shape taken as a hyperboloid of revolution. Four simultaneous coupled, time-dependent, nonlinear partial differential equations describe the electrical discharge. These are the conservation equations for ion and electron densities, the energy equation for electron temperature, and Poisson’s equation for the self-consistent electric field. By solving this formulation subject to appropriate initial and boundary conditions, charged particle densities and temperature variations have been obtained as the ionization progresses in the discharge. The results show that both the electron temperature and the charged particle densities increase with the progress of ionization. The effect of different wire polarities is also examined. With a positive wire polarity, the increases in electron temperature and charged particle densities are confined to regions of the discharge in the vicinity of the wire tip. With a negative wire polarity, the breakdown occurs in the entire gap at a faster rate than with a positive wire polarity. The wire polarity affects the magnitude of energy transfer between the particles

    Evaporation and Combustion of a Slowly Moving Liquid Fuel Droplet: Higher-Order Theory

    Get PDF
    The evaporation and combustion of a single-component fuel droplet which is moving slowly in a hot oxidant atmosphere have been analysed using perturbation methods. Results for the flow field, temperature and species distributions in each phase, interfacial heat and mass transfer, and the enhancement of the mass burning rate due to the presence of convection have all been developed correct to second order in the translational Reynolds number. This represents an advance over a previous study which analysed the problem to first order in the perturbation parameter. The primary motivation for the development of detailed analytical/numerical solutions correct to second order arises from the need for such a higher-order theory in order to investigate fuel droplet ignition and extinction characteristics in the presence of convective flow. Explanations for such a need, based on order of magnitude arguments, are included in this article. With a moving droplet, the shear at the interface causes circulatory motion inside the droplet. Owing to the large evaporation velocities at the droplet surface that usually accompany drop vaporization and burning, the entire flow field is not in the Stokes regime even for low translational Reynolds numbers. In view of this, the formulation for the continuous phase is developed by imposing slow translatory motion of the droplet as a perturbation to uniform radial flow associated with vigorous evaporation at the surface. Combustion is modelled by the inclusion of a fast chemical reaction in a thin reaction zone represented by the Burke-Schumann flame front. The complete solution for the problem correct to second order is obtained by simultaneously solving a coupled formulation for the dispersed and continuous phases. A noteworthy feature of the higher-order formulation is that both the flow field and transport equations require analysis by coupled singular perturbation procedures. The higher-order theory shows that, for identical conditions, compared with the first-order theory both the flame and the front stagnation point are closer to the surface of the drop, the evaporation is more vigorous, the droplet lifetime is shorter, and the internal vortical motion is asymmetric about the drop equatorial plane. These features are significant for ignition/extinction analyses since the prediction of the location of the point of ignition/extinction will depend upon such details. This article is the first of a two-part study; in the second part, analytical expressions and results obtained here will be incorporated into a detailed investigation of fuel droplet ignition and extinction. In view of the general nature of the formulation considered here, results presented have wider applicability in the general areas of interfacial fluid mechanics and heat/material transport. They are particularly useful in microgravity studies, in atmospheric sciences, in aerosol sciences, and in the prediction of material depletion from spherical particles

    Spatial and Kinematical Lopsidedness of Atomic Hydrogen in the Ursa Major Group of Galaxies

    Get PDF
    We have carried out the harmonic analysis of the atomic hydrogen (HI) surface density maps and the velocity fields for 11 galaxies belonging to the Ursa Major group, over a radial range of 4-6 disc scalelengths in each galaxy. This analysis gives the radial variation of spatial lopsidedness, quantified by the Fourier amplitude A1_1 of the m=1 component normalised to the average value. The kinematical analysis gives a value for the elongation of the potential to be 10\sim 10 % . The mean amplitude of spatial lopsidedness is found to be 0.14\sim 0.14 in the inner disc, similar to the field galaxies, and is smaller by a factor of 2\sim 2 compared to the Eridanus group galaxies. It is also shown that the the average value of A1_1 does not increase with the Hubble type, contrary to what is seen in field galaxies. We argue that the physical origin of lopsidedness in the Ursa Major group of galaxies is tidal interactions, albeit weaker and less frequent than in Eridanus. Thus systematic studies of lopsidedness in groups of galaxies can provide dynamical clues regarding the interactions and evolution of galaxies in a group environment.Comment: 12 pages, 7 figures, 3 tables. Accepted for publication by MNRA

    Isotropic reconstruction of 3D fluorescence microscopy images using convolutional neural networks

    Full text link
    Fluorescence microscopy images usually show severe anisotropy in axial versus lateral resolution. This hampers downstream processing, i.e. the automatic extraction of quantitative biological data. While deconvolution methods and other techniques to address this problem exist, they are either time consuming to apply or limited in their ability to remove anisotropy. We propose a method to recover isotropic resolution from readily acquired anisotropic data. We achieve this using a convolutional neural network that is trained end-to-end from the same anisotropic body of data we later apply the network to. The network effectively learns to restore the full isotropic resolution by restoring the image under a trained, sample specific image prior. We apply our method to 33 synthetic and 33 real datasets and show that our results improve on results from deconvolution and state-of-the-art super-resolution techniques. Finally, we demonstrate that a standard 3D segmentation pipeline performs on the output of our network with comparable accuracy as on the full isotropic data

    Co-Localization of DNA i-Motif-Forming Sequences and 5-Hydroxymethyl-cytosines in Human Embryonic Stem Cells

    Get PDF
    G-quadruplexes (G4s) and i-motifs (iMs) are tetraplex DNA structures. Sequences capable of forming G4/iMs are abundant near the transcription start sites (TSS) of several genes. G4/iMs affect gene expression in vitro. Depending on the gene, the presence of G4/iMs can enhance or suppress expression, making it challenging to discern the underlying mechanism by which they operate. Factors affecting G4/iM structures can provide additional insight into their mechanism of regulation. One such factor is epigenetic modification. The 5-hydroxymethylated cytosines (5hmCs) are epigenetic modifications that occur abundantly in human embryonic stem cells (hESC). The 5hmCs, like G4/iMs, are known to participate in gene regulation and are also enriched near the TSS. We investigated genomic co-localization to assess the possibility that these two elements may play an interdependent role in regulating genes in hESC. Our results indicate that amongst 15,760 G4/iM-forming locations, only 15% have 5hmCs associated with them. A detailed analysis of G4/iM-forming locations enriched in 5hmC indicates that most of these locations are in genes that are associated with cell differentiation, proliferation, apoptosis and embryogenesis. The library generated from our analysis is an important resource for investigators exploring the interdependence of these DNA features in regulating expression of selected genes in hESC

    Global Star Formation Rates in Disk Galaxies and Circumnuclear Starbursts from Cloud Collisions

    Full text link
    We invoke star formation triggered by cloud-cloud collisions to explain global star formation rates of disk galaxies and circumnuclear starbursts. Previous theories based on the growth rate of gravitational perturbations ignore the dynamically important presence of magnetic fields. Theories based on triggering by spiral density waves fail to explain star formation in systems without such waves. Furthermore, observations suggest gas and stellar disk instabilities are decoupled. Following Gammie, Ostriker & Jog (1991), the cloud collision rate is set by the shear velocity of encounters with initial impact parameters of a few tidal radii, due to differential rotation in the disk. This, together with the effective confinement of cloud orbits to a two dimensional plane, enhances the collision rate above that for particles in a three dimensional box. We predict Sigma_{SFR}(R) proportional to Sigma_{gas} Omega (1-0.7 beta). For constant circular velocity (beta = 0), this is in agreement with recent observations (Kennicutt 1998). We predict a B-band Tully-Fisher relation: L_{B} proportional to v_{circ}^{7/3}, also consistent with observations. As additional tests, we predict enhanced star formation in regions with relatively high shear rates, and lower star formation efficiencies in clouds of higher mass.Comment: 27 pages including 3 figures and 2 tables. Accepted to ApJ. Expanded statistical analysis of cloud SF efficiency test. Stylistic changes. Data for figures available electronically at http://astro.berkeley.edu/~jt/disksfr.htm
    corecore