36 research outputs found
Soil Temperature and Fumigation Effects on Plant Phosphorus Uptake and Related Microbial Properties
Early season problems with growth of corn (Zea mays L.) under cool, wet conditions prompted a study of the effects of soil and environmental conditions on mineralization and plant uptake of phosphorus (P). Our objective was to determine the effect of soil test P, temperature, and soil fumigation on soil P availability and uptake during early corn growth. Corn was grown in growth chambers at temperatures of 14°C or 25°C. Soils were a high-P Hastings silty clay loam (fine, montmorillonitic, mesic Udic Argiustoll) and a low-P Sharpsburg clay loam (fine, montmorillonitic, mesic Typic Argiudoll). Plants grew for up to 42 d either in soil which had been fumigated with methyl bromide to reduce microbial populations or left unfumigated. We harvested whole pots for soil and plant analysis at 1, 14, 28, and 42 d after planting. Biomass carbon (C) and biomass P were lower in fumigated soils and biomass C increased with time. Fumigation increased Bray Pl-extractable P at all times. Phosphatase activity and mycorrhizal colonization were both reduced by fumigation. Cumulative plant P uptake was highest in Hastings at 25°C. Higher temperature and higher initial P status increased plant P uptake during early growth. Plants grown in fumigated soil did not take up more P, despite greater extractable P
Protocols for Nationally Coordinated Laboratory and Field Research on Manure Nitrogen Mineralization
The National Program structure of USDA-ARS provides an opportunity to coordinate research on problems of national and global significance. A team of USDA-ARS scientists is conducting nationally coordinated research to develop predictions of manure N availability to protect water quality and improve farm solvency. Experimental design and research protocols were developed and used in common across all participating locations. Laboratory incubations are conducted at each location with a minimum of three soils, three temperatures, two wetting/drying regimes, and two manure treatments. A soil from the central United States (Catlin silt loam, fine-silty, mixed, superactive, mesic Oxyaquic Argiudoll) is used as an internal reference across all locations. Incubation data are compiled across locations to develop generalized predictions of manure nitrogen mineralization (Nmin). Field validation data are then obtained by monitoring nitrogen (N) transformations in manure-amended soil cores equipped with anion exchange resin to capture leached nitrate. This field data will be used to compare laboratory-based predictions with field observations of Nmin in each soil, climatic zone, and manure type represented. A Decision Support System will then be developed for predicting manure N mineralization across ranges in soil, climate, and manure composition. Protocols used by this research team are provided to 1) document the procedures used and 2) offer others detailed information for conducting research on nutrient transformation processes involving collaboration across locations or complementary research between laboratory and field environments