2,185 research outputs found

    An embedding potential definition of channel functions

    Full text link
    We show that the imaginary part of the embedding potential, a generalised logarithmic derivative, defined over the interface between an electrical lead and some conductor, has orthogonal eigenfunctions which define conduction channels into and out of the lead. In the case of an infinitely extended interface we establish the relationship between these eigenfunctions and the Bloch states evaluated over the interface. Using the new channel functions, a well-known result for the total transmission through the conductor system is simply derived.Comment: 14 pages, 2 figure

    A new approach to hyperbolic inverse problems II (Global step)

    Full text link
    We study the inverse problem for the second order self-adjoint hyperbolic equation with the boundary data given on a part of the boundary. This paper is the continuation of the author's paper [E]. In [E] we presented the crucial local step of the proof. In this paper we prove the global step. Our method is a modification of the BC-method with some new ideas. In particular, the way of the determination of the metric is new.Comment: 21 pages, 2 figure

    On the isospin dependence of the mean spin-orbit field in nuclei

    Get PDF
    By the use of the latest experimental data on the spectra of 133^{133}Sb and 131^{131}Sn and on the analysis of properties of other odd nuclei adjacent to doubly magic closed shells the isospin dependence of a mean spin-orbit potential is defined. Such a dependence received the explanation in the framework of different theoretical approaches.Comment: 52 pages, Revtex, no figure

    Bosonic and fermionic single-particle states in the Haldane approach to statistics for identical particles

    Full text link
    We give two formulations of exclusion statistics (ES) using a variable number of bosonic or fermionic single-particle states which depend on the number of particles in the system. Associated bosonic and fermionic ES parameters are introduced and are discussed for FQHE quasiparticles, anyons in the lowest Landau level and for the Calogero-Sutherland model. In the latter case, only one family of solutions is emphasized to be sufficient to recover ES; appropriate families are specified for a number of formulations of the Calogero-Sutherland model. We extend the picture of variable number of single-particle states to generalized ideal gases with statistical interaction between particles of different momenta. Integral equations are derived which determine the momentum distribution for single-particle states and distribution of particles over the single-particle states in the thermal equilibrium.Comment: 6 pages, REVTE

    Topological Entanglement Entropy of a Bose-Hubbard Spin Liquid

    Full text link
    The Landau paradigm of classifying phases by broken symmetries was demonstrated to be incomplete when it was realized that different quantum Hall states could only be distinguished by more subtle, topological properties. Today, the role of topology as an underlying description of order has branched out to include topological band insulators, and certain featureless gapped Mott insulators with a topological degeneracy in the groundstate wavefunction. Despite intense focus, very few candidates for these topologically ordered "spin liquids" exist. The main difficulty in finding systems that harbour spin liquid states is the very fact that they violate the Landau paradigm, making conventional order parameters non-existent. Here, we uncover a spin liquid phase in a Bose-Hubbard model on the kagome lattice, and measure its topological order directly via the topological entanglement entropy. This is the first smoking-gun demonstration of a non-trivial spin liquid, identified through its entanglement entropy as a gapped groundstate with emergent Z2 gauge symmetry.Comment: 4+ pages, 3 figure

    Conductance and Shot Noise for Particles with Exclusion Statistics

    Full text link
    The first quantized Landauer approach to conductance and noise is generalized to particles obeying exclusion statistics. We derive an explicit formula for the crossover between the shot and thermal noise limits and argue that such a crossover can be used to determine experimentally whether charge carriers in FQHE devices obey exclusion statistics.Comment: 4 pages, revtex, 1 eps figure include

    Rigorous Analysis of Singularities and Absence of Analytic Continuation at First Order Phase Transition Points in Lattice Spin Models

    Get PDF
    We report about two new rigorous results on the non-analytic properties of thermodynamic potentials at first order phase transition. The first one is valid for lattice models (d≥2d\geq 2) with arbitrary finite state space, and finite-range interactions which have two ground states. Under the only assumption that the Peierls Condition is satisfied for the ground states and that the temperature is sufficiently low, we prove that the pressure has no analytic continuation at the first order phase transition point. The second result concerns Ising spins with Kac potentials Jγ(x)=γdϕ(γx)J_\gamma(x)=\gamma^d\phi(\gamma x), where 0<γ<10<\gamma<1 is a small scaling parameter, and ϕ\phi a fixed finite range potential. In this framework, we relate the non-analytic behaviour of the pressure at the transition point to the range of interaction, which equals γ−1\gamma^{-1}. Our analysis exhibits a crossover between the non-analytic behaviour of finite range models (γ>0\gamma>0) and analyticity in the mean field limit (γ↘0\gamma\searrow 0). In general, the basic mechanism responsible for the appearance of a singularity blocking the analytic continuation is that arbitrarily large droplets of the other phase become stable at the transition point.Comment: 4 pages, 2 figure

    Classical phase space and statistical mechanics of identical particles

    Get PDF
    Starting from the quantum theory of identical particles, we show how to define a classical mechanics that retains information about the quantum statistics. We consider two examples of relevance for the quantum Hall effect: identical particles in the lowest Landau level, and vortices in the Chern-Simons Ginzburg-Landau model. In both cases the resulting {\em classical} statistical mechanics is shown to be a nontrivial classical limit of Haldane's exclusion statistics.Comment: 40 pages, Late

    Inverse problems for Schrodinger equations with Yang-Mills potentials in domains with obstacles and the Aharonov-Bohm effect

    Full text link
    We study the inverse boundary value problems for the Schr\"{o}dinger equations with Yang-Mills potentials in a bounded domain Ω0⊂Rn\Omega_0\subset\R^n containing finite number of smooth obstacles Ωj,1≤j≤r\Omega_j,1\leq j \leq r. We prove that the Dirichlet-to-Neumann operator on ∂Ω0\partial\Omega_0 determines the gauge equivalence class of the Yang-Mills potentials. We also prove that the metric tensor can be recovered up to a diffeomorphism that is identity on ∂Ω0\partial\Omega_0.Comment: 15 page
    • …
    corecore