18 research outputs found

    A novel nano-energetic system based on bismuth hydroxide

    Get PDF
    We report the first study of gas generation and thermal wave behavior during the performance of a novel nano-energetic system based on aluminum and bismuth hydroxide Al–Bi(OH)3. Thermodynamic calculations demonstrate that this system is comparable to one of the most powerful known nanothermite systems, Al–Bi2O3, in terms of energy capacity per initial charge mass, and may generate more than twice the gaseous products: 0.0087 mol g1 . Differential scanning calorimetry analysis shows that homogenization of the as-received powder using mechanical activation is an essential step to reduce the decomposition energy of bismuth hydroxide by 30%. This results in nano-thermite with higher pressure discharge abilities. The mechanical activation with energy of 450–750 kJ g1 is enough to transform micro-meter sized particles to sub-micro and nano-sized particles. The resulting nanothermite generated a significant pressure discharge with a value of up to 5.6 kPa m3 g

    Laminar composite structures for high power actuators

    Get PDF
    Twisted laminar composite structures for high power and large-stroke actuators based on coiled Multi Wall Carbon Nanotube (MWNT) composite yarns were crafted by integrating high-density Nanoenergetic Gas Generators (NGGs) into carbon nanotube sheets. The linear actuation force, resulting from the pneumatic force caused by expanding gases confined within the pores of laminar structures and twisted carbon nanotube yarns, can be further amplified by increasing NGG loading and yarns twist density, as well as selecting NGG compositions with high energy density and large-volume gas generation. Moreover, the actuation force and power can be tuned by the surrounding environment, such as to increase the actuation by combustion in ambient air. A single 300-μm-diameter integrated MWNT/NGG coiled yarn produced 0.7 MPa stress and a contractile specific work power of up to 4.7 kW/kg, while combustion front propagated along the yarn at a velocity up to 10 m/s. Such powerful yarn actuators can also be operated in a vacuum, enabling their potential use for deploying heavy loads in outer space, such as to unfold solar panels and solar sails

    Tuning the Reactivity of Nanoenergetic Gas Generators Based on Bismuth and Iodine oxidizers

    Get PDF
    There is a growing interest on novel energetic materials called Nanoenergetic Gas- Generators (NGGs) which are potential alternatives to traditional energetic materials including pyrotechnics, propellants, primers and solid rocket fuels. NGGs are formulations that utilize metal powders as a fuel and oxides or hydroxides as oxidizers that can rapidly release large amount of heat and gaseous products to generate shock waves. The heat and pressure discharge, impact sensitivity, long term stability and other critical properties depend on the particle size and shape, as well as assembling procedure and intermixing degree between the components. The extremely high energy density and the ability to tune the dynamic properties of the energetic system makes NGGs ideal candidates to dilute or replace traditional energetic materials for emerging applications. In terms of energy density, performance and controllability of dynamic properties, the energetic materials based on bismuth and iodine compounds are exceptional among the NGGs. The thermodynamic calculations and experimental study confirm that NGGs based on iodine and bismuth compounds mixed with aluminum nanoparticles are the most powerful formulations to date and can be used potentially in microthrusters technology with high thrust-to-weight ratio with controlled combustion and exhaust velocity for space applications. The resulting nano thermites generated significant value of pressure discharge up to 14.8 kPa m3/g. They can also be integrated with carbon nanotubes to form laminar composite yarns with high power actuation of up to 4700 W/kg, or be used in other emerging applications such as biocidal agents to effectively destroy harmful bacteria in seconds, with 22 mg/m2 minimal content over infected area

    Fabrication of Yttrium Ferrite Nanoparticles by Solution Combustion Synthesis

    Get PDF
    The ternary oxide system Y-Fe-O presents fascinating magnetic properties that are sensitive to the crystalline size of particles. There is a major challenge to fabricate these materials in nano-crystalline forms due to particle conglomeration during nucleation and synthesis. In this paper we report the fabrication of nano sized crystalline yttrium ferrite by solution combustion synthesis (SCS) where yttrium and iron nitrates were used as metal precursors with glycine as a fuel. The magnetic properties of the product can be selectively controlled by adjusting the ratio of glycine to metal nitrates. Yttrium ferrite nano-powder was obtained by using three concentration of glycine (3, 6 and 10 wt.%) in the initial exothermic mixture. Increasing glycine content was found to increase the reaction temperature of the system. The structural and magnetic properties of yttrium ferrite before and after annealing at temperature of 1000 °C were investigated by X-ray diffractometry, Differential Scanning Calorimetry (DSC) and cryogenic magnetometry (PPMS, Quantum Design). X-ray diffraction showed that, a broad diffraction peak was found for all samples indicating the amorphous nature of the product. Particle size and product morphology analysis identified that, Nitrate/glycine combustion caused considerable gas evolution, mainly carbon dioxide, N2 and H2O vapor, which caused the synthesized powders to become friable and loosely agglomerated for glycine concentration from 3 wt.% up to 10 wt.%. The study of the magnetic properties of produced materials in a metastable state was performed by measuring dependencies of Magnetization (M) on temperature, and magnetization on magnetic field strength between 5 K and 300 K. Magnetization measurements on temperature zero-fieldcooled and field-cooled show different patterns when the fraction of glycine is increased. The analysis of zero-field-cooled (ZFC), field-cooled (FC) and magnetization curves of annealed samples confirmed that nanoparticles exhibit superparamagnetic behavior. The increasing concentration of glycine leads to an increased blocking temperature

    Charge and Discharge Behaviour of Li-Ion Batteries at Various Temperatures Containing LiCoO2 Nanostructured Cathode Produced by CCSO

    Get PDF
    There are technical barriers for penetration market requesting rechargeable lithium-ion battery packs for portable devices that operate in extreme hot and cold environments. Many portable electronics are used in very cold (-40 °C) environments, and many medical devices need batteries that operate at high temperatures. Conventional Li-ion batteries start to suffer as the temperature drops below 0 °C and the internal impedance of the battery increases. Battery capacity also reduced during the higher/lower temperatures. The present work describes the laboratory made lithium ion battery behaviour features at different operation temperatures. The pouch-type battery was prepared by exploiting LiCoO2 cathode material synthesized by novel synthetic approach referred as Carbon Combustion Synthesis of Oxides (CCSO). The main goal of this paper focuses on evaluation of the efficiency of positive electrode produced by CCSO method. Performance studies of battery showed that the capacity fade of pouch type battery increases with increase in temperature. The experimental results demonstrate the dramatic effects on cell self-heating upon electrochemical performance. The study involves an extensive analysis of discharge and charge characteristics of battery at each temperature following 30 cycles. After 10 cycles, the battery cycled at RT and 45 °C showed, the capacity fade of 20% and 25% respectively. The discharge capacity for the battery cycled at 25 °C was found to be higher when compared with the battery cycled at 0 °C and 45 °C. The capacity of the battery also decreases when cycling at low temperatures. It was important time to charge the battery was only 2.5 hours to obtain identical nominal capacity under the charging protocol. The decrease capability of battery cycled at high temperature can be explained with secondary active material loss dominating the other losses
    corecore