5 research outputs found

    Comparison of different technologies for producing recombinant adeno-associated virus on a laboratory scale

    Get PDF
    Adeno-associated virus vectors are among the most promising ones for the delivery of transgenes to various organs and tissues. Recombinant adeno-associated virus (rAAV) is able to transduce both dividing and non-dividing cells, has low immunogenicity, and is able to provide long-term expression of transgenes. Modern technologies make it possible to obtain rAAV for in vivo use, but they are not without drawbacks associated with laboriousness, scalability difficulties, and high cost, therefore, improvement of technological schemes for obtaining rAAV is an urgent issue. The aim of the study was to compare different technological approaches to rAAV production based on different conditions of the transfected HEK293 cell line cultivation on a laboratory scale. Materials and methods: HEK293 cell culture, AAV-DJ Packaging System, PlasmidSelect Xtra Starter Kit were used in the study. The technologies were compared using a model rAAV vector with a single-domain antibody transgene fused to the Fc-fragment of IgG1 specific to botulinum toxin. HEK293 cells were transfected with supercoiled plasmid DNA isolated by three-step chromatographic purification. The identity of the rAAV preparation was determined by electrophoresis, immunoblotting, and real-time polymerase chain reaction. Results: the study demonstrated the efficiency of the chromatographic method for obtaining a supercoiled form of plasmid DNA that can be used for efficient transfection of cell culture in order to produce rAAV. The study compared the following processes of rAAV production: using transient transfection and cultivation of the transfected HEK293 cell suspension in Erlenmeyer flasks, adherent culture in T-flasks, and adherent culture in a BioBLU 5p bioreactor on a matrix of Fibra-Cel disks. Conclusions: the data obtained showed the possibility of using the described approaches to purification of plasmid DNA, cell transfection, and cultivation of the transfected cells under various conditions to obtain rAAV samples that expresses the antibody gene. The BioBLU 5p reactor with Fibra-Cel discs was used for the first time to produce preparative quantities of rAAV on a laboratory scale, which increased the adherent surface area during cell culture and transfection, and, as a result, increased the yield of the target product

    Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ получСния Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ адСноассоциированного вируса Π² Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠΌ ΠΌΠ°ΡΡˆΡ‚Π°Π±Π΅

    Get PDF
    Adeno-associated virus vectors are among the most promising ones for the delivery of transgenes to various organs and tissues. Recombinant adeno-associated virus (rAAV) is able to transduce both dividing and non-dividing cells, has low immunogenicity, and is able to provide long-term expression of transgenes. Modern technologies make it possible to obtain rAAV for in vivo use, but they are not without drawbacks associated with laboriousness, scalability difficulties, and high cost, therefore, improvement of technological schemes for obtaining rAAV is an urgent issue. The aim of the study was to compare different technological approaches to rAAV production based on different conditions of the transfected HEK293 cell line cultivation on a laboratory scale. Materials and methods: HEK293 cell culture, AAV-DJ Packaging System, PlasmidSelect Xtra Starter Kit were used in the study. The technologies were compared using a model rAAV vector with a single-domain antibody transgene fused to the Fc-fragment of IgG1 specific to botulinum toxin. HEK293 cells were transfected with supercoiled plasmid DNA isolated by three-step chromatographic purification. The identity of the rAAV preparation was determined by electrophoresis, immunoblotting, and real-time polymerase chain reaction. Results: the study demonstrated the efficiency of the chromatographic method for obtaining a supercoiled form of plasmid DNA that can be used for efficient transfection of cell culture in order to produce rAAV. The study compared the following processes of rAAV production: using transient transfection and cultivation of the transfected HEK293 cell suspension in Erlenmeyer flasks, adherent culture in T-flasks, and adherent culture in a BioBLU 5p bioreactor on a matrix of Fibra-Cel disks. Conclusions: the data obtained showed the possibility of using the described approaches to purification of plasmid DNA, cell transfection, and cultivation of the transfected cells under various conditions to obtain rAAV samples that expresses the antibody gene. The BioBLU 5p reactor with Fibra-Cel discs was used for the first time to produce preparative quantities of rAAV on a laboratory scale, which increased the adherent surface area during cell culture and transfection, and, as a result, increased the yield of the target product.Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π½Π° основС адСноассоциированного вируса ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ΄Π½ΠΈΠΌΠΈ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ пСрспСктивных для доставки трансгСнов Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΎΡ€Π³Π°Π½Ρ‹ ΠΈ Ρ‚ΠΊΠ°Π½ΠΈ. Π Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹ΠΉ адСноассоциированный вирус (rAAV) способСн Ρ‚Ρ€Π°Π½ΡΠ΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ дСлящиСся, Ρ‚Π°ΠΊ ΠΈ нСдСлящиСся ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Π½ΠΈΠ·ΠΊΠΎΠΉ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ³Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ способСн ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ Π΄ΠΎΠ»Π³ΠΎΡΡ€ΠΎΡ‡Π½ΡƒΡŽ ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ трансгСнов. На сСгодняшний дСнь ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ rAAV для примСнСния in vivo, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΎΠ½ΠΈ Π½Π΅ Π»ΠΈΡˆΠ΅Π½Ρ‹ нСдостатков, связанных с Ρ‚Ρ€ΡƒΠ΄ΠΎΠ΅ΠΌΠΊΠΎΡΡ‚ΡŒΡŽ, слоТностями ΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ ΠΈ высокой ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΡŽ, поэтому вопрос ΠΎΠ± ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠΈ тСхнологичСских схСм получСния rAAV являСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹: сравнСниС тСхнологичСских ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΡŽ rAAV, основанных Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… условиях ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ трансфицированной ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ HEK293 Π² Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠΌ ΠΌΠ°ΡΡˆΡ‚Π°Π±Π΅.Β ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: Π² исслСдовании использовали ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρƒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ HEK293, ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΡƒΡŽ систСму AAV-DJ Packaging System, систСму PlasmidSelect Xtra Starter Kit. Π’ качСствС ΠΌΠΎΠ΄Π΅Π»ΠΈ для сравнСния Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ использовали Π²Π΅ΠΊΡ‚ΠΎΡ€ rAAV с трансгСном ΠΎΠ΄Π½ΠΎΠ΄ΠΎΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°, слитого с Fc-Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠΌ IgG1, спСцифичного ΠΊ ботулотоксину. ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ трансфСкции ΠΊΠ»Π΅Ρ‚ΠΎΠΊ HEK293 супСрскручСнной ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš, Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ трСхступСнчатой хроматографичСской очистки. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ подлинности ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° rAAV ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ элСктрофорСза, ΠΈΠΌΠΌΡƒΠ½ΠΎΠ±Π»ΠΎΡ‚Ρ‚ΠΈΠ½Π³Π° ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Ρ†Π΅ΠΏΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.Β Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: продСмонстрирована ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ получСния супСрскручСнной Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš, ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΠΎΠΉ для эффСктивной трансфСкции с Ρ†Π΅Π»ΡŒΡŽ получСния rAAV. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ сравнСниС процСсса Ρ‚Ρ€Π°Π½Π·ΠΈΠ΅Π½Ρ‚Π½ΠΎΠΉ трансфСкции ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ трансфицированных ΠΊΠ»Π΅Ρ‚ΠΎΠΊ HEK293 Π² условиях суспСнзии Π² ΠΊΠΎΠ»Π±Π°Ρ…, Π°Π΄Π³Π΅Π·ΠΈΠΈ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ„Π»Π°ΠΊΠΎΠ½Π°Ρ… ΠΈ Π°Π΄Π³Π΅Π·ΠΈΠΈ Π² Π±ΠΈΠΎΡ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π΅ BioBLU 5p Π½Π° ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ ΠΈΠ· дисков Fibra-Cel с Ρ†Π΅Π»ΡŒΡŽ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ rAAV.Β Π’Ρ‹Π²ΠΎΠ΄Ρ‹: ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ примСнСния описанных ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ очисткС ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš, трансфСкции ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ трансфицированных ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… условиях для получСния ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° rAAV, ΡΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Π³Π΅Π½ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°. Π Π΅Π°ΠΊΡ‚ΠΎΡ€ BioBLU 5p с дисками Fibra-Cel Π±Ρ‹Π» Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ использован для получСния ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… количСств rAAV Π² Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠΌ ΠΌΠ°ΡΡˆΡ‚Π°Π±Π΅, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности Π°Π΄Π³Π΅Π·ΠΈΠΈ ΠΏΡ€ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈ трансфСкции ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ, ΠΊΠ°ΠΊ слСдствиС, ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΡ‚ΡŒ Π²Ρ‹Ρ…ΠΎΠ΄ Ρ†Π΅Π»Π΅Π²ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°

    rAAV expressing recombinant antibody for emergency prevention and long-term prophylaxis of COVID-19

    Get PDF
    IntroductionNumerous agents for prophylaxis of SARS-CoV-2-induced diseases are currently registered for the clinical use. Formation of the immunity happens within several weeks following vaccine administration which is their key disadvantage. In contrast, drugs based on monoclonal antibodies, enable rapid passive immunization and therefore can be used for emergency pre- and post-exposure prophylaxis of COVID-19. However rapid elimination of antibody-based drugs from the circulation limits their usage for prolonged pre-exposure prophylaxis.MethodsIn current work we developed a recombinant adeno-associated viral vector (rAAV), expressing a SARS-CoV-2 spike receptor-binding domain (RBD)-specific antibody P2C5 fused with a human IgG1 Fc fragment (P2C5-Fc) using methods of molecular biotechnology and bioprocessing.Results and discussionsA P2C5-Fc antibody expressed by a proposed rAAV (rAAV-P2C5-Fc) was shown to circulate within more than 300 days in blood of transduced mice and protect animals from lethal SARS-CoV-2 virus (B.1.1.1 and Omicron BA.5 variants) lethal dose of 105 TCID50. In addition, rAAV-P2C5-Fc demonstrated 100% protective activity as emergency prevention and long-term prophylaxis, respectively. It was also demonstrated that high titers of neutralizing antibodies to the SARS-CoV-2 virus were detected in the blood serum of animals that received rAAV-P2C5-Fc for more than 10 months from the moment of administration.Our data therefore indicate applicability of an rAAV for passive immunization and induction of a rapid long-term protection against various SARS-CoV-2 variants
    corecore