3 research outputs found

    Groundwater Hydrogeochemical and Quality Appraisal for Agriculture Irrigation in Greenbelt Area, Iraq

    Full text link
    This study highlights the groundwater hydrogeochemical characteristics and processes (hydrochemistry characteristics, ion exchange, and salinization) and quality suitability assessment for irrigation purposes from five wells in the Greenbelt area located in northwestern Al‐Najaf Gov-ernorate, Iraq. The suitability of groundwater for irrigation was assessed based on the irrigation water quality index (IWQI) for thirteen parameters and groundwater quality indices such as total dissolved solids (TDS), electrical conductivity (EC), sodium adsorption ratio (SAR), soluble sodium percent (SSP), residual sodium carbonate (RSC), total hardness (TH), permeability index (PI), potential salinity (PS), Kelley’s ratio (KR), and magnesium hazard ratio (MHR). The IWQI’s average values ranged between 76–139. The results of IWQI for the first and second sampling sites showed values of 139 and 104, respectively, indicating that the groundwater was unsuitable and unsafe for irrigation. In contrast, the IWQI for the third, fourth, and fifth sites were 83, 97, and 76, respectively, indicating that the groundwater was safe and possibly used for irrigation. The EC, TDS, PS, and MHR indices were all found to be unsuitable for irrigation in all five sites, and the KR index was also found to be unsuitable for agricultural irrigation in about 80% of the sites, while it was found that the indices of SAR, SSP, RSC, PI, and TH for all sites were suitable and safe for irrigation. As a result of this study, it has been determined that groundwater in the study area is unsuitable for agricultural irrigation. For sustainable groundwater exploitation, it is advised that a continuous water‐quality‐monitoring program should be implemented, as well as the development of suitable management practices. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Efficiency of lithium bromide absorption chiller with multi-stage absorption and generation processes with associated mass flow

    No full text
    A study of the cycles of a lithium bromide–water absorption chiller with two-stage absorption and three-stage generation of a working substance vapor with an associated mass flow with different supply of the cooling medium to the apparatus has been carried out. The temperature of the heating source necessary for the implementation of the actual thermodynamic cycle of the Lithium Bromide– Water Absorption Chiller (LBWAC) and the most effective thermodynamic cycle has been determined. A comparative analysis of the cycle understudy with the sample cycle (one-stage cycle) LBWAC is carried out. Despite the lower values of the coefficient of performance (COP), the cycle under study provides a doubling of the cooling capacity of the machine, at the same flow rate of the heating source, which is an advantage when the flow rate of the heating source is limited. This circumstance is explained by the fact that in LBWAC with multi-stage absorption and generation, the heating source sequentially passes through three generator stages. Therefore, the degree of cooling in the chiller with the considered cycle is three times higher than this value of a single-stage LBWA
    corecore