3,093 research outputs found

    Multiplication theory for dynamically biased avalanche photodiodes: new limits for gain bandwidth product

    Get PDF
    Novel theory is developed for the avalanche multiplication process in avalanche photodiodes (APDs) under time-varying reverse-biasing conditions. Integral equations are derived characterizing the statistics of the multiplication factor and the impulse-response function of APDs, as well as their breakdown probability, all under the assumption that the electric field driving the avalanche process is time varying and spatially nonuniform. Numerical calculations generated by the model predict that by using a bit-synchronous sinusoidal biasing scheme to operate the APD in an optical receiver, the pulse-integrated gain-bandwidth product can be improved by a factor of 5 compared to the same APD operating under the conventional static biasing. The bit-synchronized periodic modulation of the electric field in the multiplication region serves to (1) produce large avalanche multiplication factors with suppressed avalanche durations for photons arriving in the early phase of each optical pulse; and (2) generate low avalanche gains and very short avalanche durations for photons arriving in the latter part of each optical pulse. These two factors can work together to reduce intersymbol interference in optical receivers without sacrificing sensitivity

    New Perspective on Passively Quenched Single Photon Avalanche Diodes: Effect of Feedback on Impact Ionization

    Get PDF
    Single-photon avalanche diodes (SPADs) are primary devices in photon counting systems used in quantum cryptography, time resolved spectroscopy and photon counting optical communication. SPADs convert each photo-generated electron hole pair to a measurable current via an avalanche of impact ionizations. In this paper, a stochastically self-regulating avalanche model for passively quenched SPADs is presented. The model predicts, in qualitative agreement with experiments, three important phenomena that traditional models are unable to predict. These are: (1) an oscillatory behavior of the persistent avalanche current; (2) an exponential (memoryless) decay of the probability density function of the stochastic quenching time of the persistent avalanche current; and (3) a fast collapse of the avalanche current, under strong feedback conditions, preventing the development of a persistent avalanche current. The model specifically captures the effect of the load’s feedback on the stochastic avalanche multiplication, an effect believed to be key in breaking today’s counting rate barrier in the 1.55–μm detection window

    Multi-Gain-Stage InGaAs Avalanche Photodiode with Enhanced Gain and Reduced Excess Noise

    Get PDF
    We report the design, fabrication, and test of an InGaAs avalanche photodiode (APD) for 950-1650 nm wavelength sensing applications. The APD is grown by molecular beam epitaxy on InP substrates from lattice-matched InGaAs and InAlAs alloys. Avalanche multiplication inside the APD occurs in a series of asymmetric gain stages whose layer ordering acts to enhance the rate of electron-initiated impact ionization and to suppress the rate of hole-initiated ionization when operated at low gain. The multiplication stages are cascaded in series, interposed with carrier relaxation layers in which the electric field is low, preventing avalanche feedback between stages. These measures result in much lower excess multiplication noise and stable linear-mode operation at much higher avalanche gain than is characteristic of APDs fabricated from the same semiconductor alloys in bulk. The noise suppression mechanism is analyzed by simulations of impact ionization spatial distribution and gain statistics, and measurements on APDs implementing the design are presented. The devices employing this design are demonstrated to operate at linear-mode gain in excess of 6000 without avalanche breakdown. Excess noise characterized by an effective impact ionization rate ratio below 0.04 were measured at gains over 1000

    Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy

    Full text link
    Optical resonant microcavities with ultra high quality factors are widely used for biosensing. Until now, the primary method of detection has been based upon tracking the resonant wavelength shift as a function of biodetection events. One of the sources of noise in all resonant-wavelength shift measurements is the noise due to intensity fluctuations of the laser source. An alternative approach is to track the change in the quality factor of the optical cavity by using phase shift cavity ring down spectroscopy, a technique which is insensitive to the intensity fluctuations of the laser source. Here, using biotinylated microtoroid resonant cavities, we show simultaneous measurement of the quality factor and the wavelength shift by using phase shift cavity ring down spectroscopy. These measurements were performed for disassociation phase of biotin-streptavidin reaction. We found that the disassociation curves are in good agreement with the previously published results. Hence, we demonstrate not only the application of phase shift cavity ring down spectroscopy to microcavities in the liquid phase but also simultaneous measurement of the quality factor and the wavelength shift for the microcavity biosensors in the application of kinetics measurements

    Dependence of the Performance of Single Photon Avalanche Diodes on the Multiplication Region Width

    Get PDF
    The dependence of the performance of separate-absorption-multiplication (SAM) single-photon avalanche diodes (SPADs) on the width of the multiplication region is theoretically investigated. The theory is applied to SAM SPADs with InP homojunction multiplication regions and InAlAs-InP heterojunction multiplication regions. In both cases the absorber layer is InGaAs. Two scenarios for the dark counts are considered: (i) low-temperature operation, when the number of dark carriers is dominated by field-assisted mechanisms of band-to-band tunneling and tunneling through defects; and (ii) room-temperature operation, when the number of dark carriers in the multiplication region is dominated by the generation/recombination mechanism. The analysis utilizes a generalized theory for breakdown probability, which takes into account the random locations where dark and photogenerated carriers are produced in each layer. Depending upon the detector temperature, as the width of the multiplication region is increased the effects from the reduction in the number of dark carriers due to field-assisted generation mechanisms are counteracted by the effects from the elevation in the number of generation/recombination dark carriers. Thus, there exists an optimal width of the multiplication region that achieves the best performance of the SPAD

    Analytical Formulas for Mean Gain and Excess Noise Factor in InAs Avalanche Photodiodes

    Get PDF
    It has been known that McIntyre\u27s local multiplication theory for avalanche photodiodes (APDs) does not fully explain the experimental results for single-carrier InAs APDs, which exhibit excess noise factor values below 2. While it has been established that the inclusion of the dead-space effect in the nonlocal multiplication theory resolves this discrepancy, no closed-form formulas for the mean gain and excess noise factor have been specialized to InAs APDs in a nonlocal setting. Upon utilizing prior analytical formulation of single-carrier avalanche multiplication based on age-dependent branching theory in conjunction with nonlocal ionization coefficients and thresholds for InAs, closed-form solutions of the mean gain and the excess noise factor for InAs APDs are provided here for the first time. The formulas are validated against published experimental data from InAs APDs across a variety of multiplication region widths and are shown to be applicable for devices with multiplication widths of 500 nm and larger
    • …
    corecore