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Abstract 
Novel theory is developed for the avalanche multiplication process in avalanche photodiodes (APDs) under time-
varying reverse-biasing conditions. Integral equations are derived characterizing the statistics of the 
multiplication factor and the impulse-response function of APDs, as well as their breakdown probability, all 
under the assumption that the electric field driving the avalanche process is time varying and spatially 
nonuniform. Numerical calculations generated by the model predict that by using a bit-synchronous sinusoidal 
biasing scheme to operate the APD in an optical receiver, the pulse-integrated gain-bandwidth product can be 
improved by a factor of 5 compared to the same APD operating under the conventional static biasing. The bit-
synchronized periodic modulation of the electric field in the multiplication region serves to (1) produce large 
avalanche multiplication factors with suppressed avalanche durations for photons arriving in the early phase of 
each optical pulse; and (2) generate low avalanche gains and very short avalanche durations for photons arriving 
in the latter part of each optical pulse. These two factors can work together to reduce intersymbol interference 
in optical receivers without sacrificing sensitivity. 

1. Introduction 
Avalanche photodiodes (APDs) are the photodetectors of choice in direct-detection high-speed lightwave 
communication systems. An APD can provide high optoelectronic gains through a cascade of impact ionizations, 
a feature that is not present in the simpler pin photodetector [1, 2]. The gain offered by the APD improves the 
receiver sensitivity as it amplifies the photocurrent, thereby reducing the relative effect of Johnson noise in the 
preamplifier stage of an optical receiver and improving the receiver’s sensitivity [3, 4]. In addition to their high 
sensitivity, APD-based receivers are highly cost effective compared to receivers that employ a combination of 
optical pre-amplification and a pin photodetector [5]. However, the APD’s avalanche duration, the time it takes 
for the chain of all impact ionizations to complete each time a photon-generated carrier triggers and avalanche, 
can limit the APD’s gain-bandwidth product and lead to intersymbol interference (ISI) in optical receivers [6]. 
Since both the gain and the avalanche duration are stochastic, statistical fluctuations of these quantities must 
also be factored in when assessing the avalanche-gain versus ISI-penalty tradeoff [6, 7]. 

While separate absorption and multiplication (SAM) InP-InGaAs APDs have been successfully deployed in 10 
Gbps lightwave systems, their utility at higher bit rates has been limited due to their long avalanche durations. 
Meanwhile, numerous efforts have been reported in developing APDs for 40 Gbps systems. For example, 
Makita et al. [8] demonstrated a sensitivity of −19dBm at 40 Gbps with a bit-error rate of 10−10, providing 
approximately a 9dBm improvement over conventional pin diode. This was achieved by including a trans-
impedance amplifier with tunable response to boost the gain-bandwidth-product (GBP) from 140 to 270 GHz 
and operating the APDs with avalanche gain values of 3 to 10. Notably, the biggest breakthrough came as Si/Ge 
APDs were demonstrated in 2009. Kang et al. [9] reported a GBP of 340GHz, followed by Zaoui et al. [10] 
demonstrating a Si-Ge APD with a GBP of 840 GHz operating at 1.31 μm. The high GBP associated with the Si 
multiplication layer is attributed to the favorable ionization properties of Si (the electron-to-hole ionization 
coefficient ratio, k, is much less than unity in Si). However, these devices have lower normal-incidence sensitivity 
compared with InGaAs-InP APDs of the same absorption-layer thickness [11] due to a combination of high dark 
currents, resulting from the low bandgap and high level of intrinsic carrier concentration of Ge, and reduced 
quantum efficiency of Ge at longer telecom wavelengths due to its low absorption coefficient at 1.55 μm 
(3.5x102 cm−1 for Ge compared to 6.1x103 cm−1 for InGaAs). To compensate for the reduced photoresponsivity of 
Ge at longer telecom wavelengths, waveguide structures have been proposed and unity-gain bandwidths of 23 
GHz and 29.5 GHz have been achieved for evanescent-coupled and butt-coupled Si/Ge APDs, respectively [11]. 
While Si/Ge APDs show promise due to their compatibility with SOI CMOS and the almost transit-time-limited 
avalanche duration associated with Si (since hole ionization is minimal), and despite all numerous other efforts 
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in the past two decades or so that targeted new APD materials and structures [12], to date there are no 
commercial APDs for 1.55 μm 40-Gbps communication. 

In this paper we present a novel theory to rigorously analyze the APD’s performance under dynamic biasing and 
project substantial improvements in the GBP offered by dynamic biasing compared to static biasing. While 
sinusoidal biasing has been reported by Herbert and Chidley [13] as a way to reduce excess noise in APDs, to the 
best of our knowledge the concept of dynamic biasing has not been explored for linear-mode operation as a way 
to improve bandwidth. We will show that sinusoidal biasing of the APD (where the bias is synchronous with the 
optical pulse stream and has a properly selected DC level, peak-to-peak value and phase) can offer up to five-
fold increase the effective gain-bandwidth product. The sinusoidal waveform is selected here for its ease of 
practical implementation (not considered in this paper) as well as its minimal distortion at high speeds. In 
making such prediction, we present the first theory for the avalanche multiplication process under dynamic 
electric fields, which is a major expansion beyond the theories for impact ionization under the assumption of 
spatially non-uniform yet static electric fields [14, 15]. Specifically, in this paper we extend the recurrence theory 
for the statistics of the stochastic gain [15] and the impulse-response function [16] of APDs to the general 
setting where the electric field is dynamic and arbitrary. The dynamic impact ionization theory is equally 
applicable to the Geiger-mode operation of APDs. To this end, we also derive recursive equations that 
characterize the breakdown probability under dynamic biasing. 

The remainder of this paper is organized as follows. In Section 2 we give a qualitative description of the potential 
benefits of dynamic biasing in improving the gain-bandwidth product. In Section 3 we extend the key concepts 
related to impact ionization to a dynamic-electric-field setting. The avalanche multiplication theory under 
dynamic electric fields is presented in Section 4 while additional generalizations are presented in the Appendix. 
Numerical results are presented in Section 5, and the conclusions are drawn in Section 6. 

2. Potential for breaking the traditional gain-bandwidth limits through 
dynamic biasing 
In the traditional linear-mode setting, an APD is operated under a static (fixed) reverse bias, which is typically 
selected to yield the optimal multiplication factor that maximizes the receiver sensitivity [17] as it balances 
speed, avalanche amplification (and hence Johnson-noise suppression), and excess noise resulting from the 
impact ionization process being stochastic. For values of the mean gain that are of interest to optical 
communication (typically >10), the bandwidth of an APD is limited by the avalanche duration – the time needed 
for all the impact ionizations to terminate. It is well known that there is a tradeoff between the APD’s avalanche-
duration-limited bandwidth and its avalanche multiplication factor [18]. For example, for InGaAs/InP APDs the 
GBP has been limited to around 170 GHz [19]. However, if bit-synchronous, periodic dynamic biasing is 
considered in lieu of the traditional static bias, as presented in this paper, then the impact ionization process 
may be modulated to achieve a substantial improvement in the GBP and therefore reduced ISI. 

Before presenting the predictions based on mathematical analysis, we will motivate the consideration of a 
dynamic-biasing scheme by projecting its properties in a qualitative manner. Consider Fig. 1 , which depicts a 
sinusoidal biasing scheme (blue curve) that is frequency-matched and synchronized with the optical bit stream. 
The photocurrent generated by each optical pulse under such dynamic biasing has the following two properties. 
First, photons that arrive early in the optical pulse experience a period of high electric field in the multiplication 
region of the APD, where they can generate a strong avalanche current in the early phase of the optical-pulse 
interval, as depicted schematically by the black curve corresponding to the dynamic-bias response in Fig. 1. 
Next, as a low electric field period follows the high-field phase within the same optical pulse, carriers in the 
multiplication region undergo a much weakened impact ionization process, which leads to the termination of 
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the avalanche current with a high probability. Thus, high-gain avalanche pulses are triggered by the “early” 
arriving photons in each optical pulse, albeit with a much reduced avalanche duration due to the weakening of 
the impact ionization in the second phase of the bias period. Second, photons that arrive late in the optical pulse 
period are still detected as the APD remains reverse biased throughout the bias period. However, the resulting 
avalanche gain is very low and the avalanche durations they trigger are very short, as depicted schematically by 
the red curve correspondig to the dynamic bias response in Fig. 1. The avalanche pulses in the traditional 
constant-biasing scheme are also shown schematically in Fig. 1 for comparison. 

 
Fig. 1 Schematic of the proposed dynamic biasing approach (blue curve) repeated periodically over optical-pulse 
intervals. The green straight line represents the traditional constant bias. The periodic change in the reverse bias 
from the first to the second half of the optical-pulse period causes (1) photons that arrive early in the pulse 
window to trigger high gains but pulse-limited durations, and (2) late photons to trigger avalanches with low 
gains and almost transit-time limited avalanche durations. Such modulation of impact ionization results in a 
much higher average GBP compared to the conventional biasing scheme. 
 

We would like to mention that while a sinusoidal-gating approach has been proposed for Geiger-mode APDs in 
the context of gated photon counting [20, 21] its rationale is different from the linear-mode dynamic biasing 
presented here. The purpose of sinusoidal-gating Geiger-mode operation is to force quenching of the avalanche 
pulse after each detection-gate (high cycle of the sinusoidal bias) and therefore minimize the total number of 
multiplications, which, in turn, would reduce afterpulsing. However, the rationale is totally different from the 
linear-mode dynamic biasing approach proposed here. Specifically, photon counting with sinusoidal-gating is a 
binary detection problem: the APD is responsive to only one photon per gate. In contrast, in the proposed 
linear-mode dynamic biasing approach each and every photon in the optical pulse that is absorbed by the 
photodetector contributes to the analog photocurrent. 

3. Impact ionization under dynamic electric fields 
Suppose that a time-varying bias, VBD(t), t ≥ 0, is applied to an APD. Consider a charge-depleted multiplication 
region of the APD extending from x = 0 to x = w, as shown in Fig. 2 , with the convention that the electric field is 
pointing in the negative x direction. Let E(x,t) denote the dynamic electric field in the multiplication region at 
position x and at time t. If the field is spatially uniform, then E(x,t) ≡ E(t) = VBD(t)/w. Suppose that a parent hole 
(electron) is created at an arbitrary location x in the multiplication region of the APD, and assume that the field 
is sufficiently high so as conduction-band electrons and valence-band holes travel at their material-specific 
saturation velocities, ve and vh, respectively. As the hole travels the multiplication region, it can impact ionize at 
a stochastic location, say ξ, and at time τ = (ξ–x)/vh. The ability of a carrier to impact ionize is probabilistic and 
depends upon the time- and position-dependent electric field as well as the carrier’s history of prior impact 
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ionizations (detailed description deferred to Subsection 3.1). Upon impact ionization, the parent hole is replaced 
with two valence-band offspring holes and a conduction-band offspring electron. Each offspring carrier 
proceeds, as its parent, to further impact ionize, and so on. As this process continues, it may or may not 
terminate, depending on the field, device and material properties. The stochastic dynamic multiplication 
factor is the total number of electron-hole pairs generated as a result of a parent carrier in the presence of the 
dynamic field; it can be either finite or infinite. On the other hand, the dynamic avalanche duration is the time 
measured from the creation of the parent carrier to the time when all carriers have exited the multiplication 
region. In Subsections 4.1 and 4.2 we will derive equations that enable us to calculate the statistics of the mean 
multiplication factor and the mean impulse response function (integral equations for the excess-noise factor and 
the breakdown probability under the dynamic fields are presented in the Appendix). However, before doing so 
we will need to extend the notions of the ionization coefficient, dead space, and the probability density function 
of the carrier’s free path (prior to ionization) to a dynamic-electric-field setting. 

 
Fig. 2 Schematic of a separate-absorption-multiplication (SAM) APD. 

We will assume throughout this paper that the change in the electric field is slow with respect to time for the 
carrier populations to reach equilibrium with the electric field for each carrier so that the ionization coefficient 
of a carrier depends adiabatically on the instantaneous electric field E(x,t) at the point where and when it impact 
ionizes. We define α(x,t) and β(x,t) as the electron and hole time-varying non-localized ionization coefficients 
associated with carriers at location x in the multiplication region and at time t. These are the ionization 
coefficients for those carriers that have already traveled the dead space, which is the minimum distance a 
carrier must travel before it acquires sufficient energy to effect an impact ionization. Following the model for 
non-localized ionization coefficients under a static electric field [22] and by replacing the static field with its 
dynamic counterpart, the dynamic ionization coefficients are given by 

(1a) 

𝛼𝛼(𝑥𝑥, 𝑡𝑡) = 𝐴𝐴𝑒𝑒 exp �− � 𝐸𝐸𝑐𝑐,𝑒𝑒

𝐸𝐸(𝑥𝑥;𝑡𝑡)
�
𝑚𝑚𝑒𝑒
�,  

(1b) 

𝛽𝛽(𝑥𝑥, 𝑡𝑡) = 𝐴𝐴ℎ exp�− �
𝐸𝐸𝑐𝑐,ℎ

𝐸𝐸(𝑥𝑥; 𝑡𝑡)�
𝑚𝑚ℎ

�, 

where the material-specific constants A, Ec, and m, are known for various III-V materials [22–24]. 

The probability density function of the carrier’s free path in a dynamic-field setting depends upon the non-local 
time-varying ionization coefficients as well as the carrier’s history. In particular, a newly born carrier cannot 
impact ionize before travelling a dead space. Consider an electron and hole created at location x and of 
age s relative to the launch instant of the dynamic electric field (at t = 0), and let Xe and Xh be their stochastic 
free-path distances to their first impact ionization. As it turns out, the age of a carrier will play a key role in the 
formulation of the theory for avalanche multiplication under dynamic fields, as described in Section 4. Under a 
dynamic electric field, the probability density function of the location, ξ, of the first ionization by a parent carrier 
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of age s and at location x is zero before the dead space is travelled. After the dead space, however, it is 
exponential with a nonuniform rate that not only depends upon the path of the carrier from its birth 
location x to ξ but also on the history of the time- and space-varying electric field from the birth instant of the 
carrier to the instant of its first impact ionization. Along these lines, we can extend the shifted exponential 
model for the carrier’s free path [25] and obtain the age-dependent probability density function 
of Xe and Xhas he(ξ;x,s) and hh(ξ;x,s), respectively, 

(2a) 

ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠) = {𝛼𝛼 �𝜉𝜉, 𝑠𝑠 +
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

� exp �−� 𝛼𝛼 �𝜎𝜎, 𝑠𝑠 +
𝜎𝜎 − 𝑥𝑥
𝑣𝑣𝑒𝑒

� 𝑑𝑑𝜎𝜎
𝜉𝜉

𝑥𝑥+𝑑𝑑𝑒𝑒(𝑥𝑥,𝑠𝑠)
� , 𝜉𝜉 ≥ 𝑥𝑥 + 𝑑𝑑𝑒𝑒(𝑥𝑥, 𝑠𝑠)

0, otherwise
 

and 

(2b) 

ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠) = {𝛽𝛽 �𝜉𝜉, 𝑠𝑠 +
𝑥𝑥 − 𝜉𝜉
𝑣𝑣ℎ

�   exp �−� 𝛽𝛽 �𝜎𝜎, 𝑠𝑠 +
𝑥𝑥 − 𝜎𝜎
𝑣𝑣ℎ

� 𝑑𝑑𝜎𝜎
𝑥𝑥−𝑑𝑑ℎ(𝑥𝑥,𝑠𝑠)

𝜉𝜉
� , 𝜉𝜉 ≤ 𝑥𝑥 − 𝑑𝑑ℎ(𝑥𝑥, 𝑠𝑠)

0, otherwise
, 

where de(x,s) and dh(x,s) represent the age-dependent dead spaces for an electron and hole, respectively, that 
were created at position x and of age s. Here, he(ξ;x,s)Δξ approximates the probability that an electron born at 
location x and with age s (relative to the launch instant of the electric field) impact ionizes for the first time 
anywhere in the location ξ to ξ + Δξ. The electron’s age-dependent dead space is computed by equating the 
ionization threshold energy to the energy gained from the ballistic transport of the carrier in the time- and 
space-varying electric field. Thus, the age-dependent dead space is the minimum d value that satisfies the 
equation 

(3a) 

𝑞𝑞� 𝐸𝐸 �𝑦𝑦, 𝑠𝑠 +
𝑦𝑦 − 𝑥𝑥
𝑣𝑣𝑒𝑒

� 𝑑𝑑𝑦𝑦
𝑥𝑥+𝑑𝑑

𝑥𝑥
= 𝐸𝐸𝑡𝑡ℎ,𝑒𝑒(𝑥𝑥 + 𝑑𝑑), 

where for any 0 ≤ x ≤ w, Eth,e(x) is the ionization threshold energy for electrons for the material at position x in 
the multiplication region. Similarly, the hole’s age-dependent dead space is computed as the minimum d value 
that satisfies the equation 

(3b) 

𝑞𝑞� 𝐸𝐸 �𝑦𝑦, 𝑠𝑠 +
𝑥𝑥 − 𝑦𝑦
𝑣𝑣ℎ

� 𝑑𝑑𝑦𝑦
𝑥𝑥

𝑥𝑥−𝑑𝑑
= 𝐸𝐸𝑡𝑡ℎ,ℎ(𝑥𝑥 − 𝑑𝑑), 

where Eth,h(x) is the ionization threshold energy for holes for the material at position x in the multiplication 
region. (Note that Eqs. (3a) and (3b) above respectively collapse to Eqs. (4) and (5) in [26] when the field is 
static.) Note that given the knowledge of the material composition in the multiplication region and the electric 
field profile and its evolution in time, the age-dependent dead space can be calculated for all x and s. 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-20-7-8024&id=231245#ref25
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-20-7-8024&id=231245#e3a
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-20-7-8024&id=231245#e3b
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-20-7-8024&id=231245#e4
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-20-7-8024&id=231245#e5
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-20-7-8024&id=231245#ref26


4. Avalanche multiplication theory under dynamic electric fields 
The recurrence theory for the avalanche multiplication, including the statistics of the gain and impulse-response 
function, under non-uniform, static electric fields was originally formulated by Hayat et al. in [15, 16] and later 
extended to accommodate stochastic carrier velocity by Tan et al. [27]. Here we introduce a generalization of 
the recurrence theory under dynamic electric fields. As we alluded to before, the age of the parent carrier that 
triggers the avalanche process is key in modeling the avalanche multiplication process when the field is allowed 
to be time varying because carriers with different ages will experience different dynamical electric field ahead of 
them as they travel the multiplication region. Specifically, if we assume a causal and spatially non-uniform 
electric-field, E(x,t), launched at time t = 0, then an electron born at location x with age 0 will experience this 
time-varying field in its lifetime. In contrast, if an electron is born at location x with age s (relative to the launch 
time of the field at t = 0) then it will experience in its lifetime a clipped version of the dynamic field starting 
at t = s, namely E(x,t)u(t-s), where u(.) is the unit-step function. To take the carrier’s “age” into account while 
modeling the avalanche multiplication process, we must formulate a model in which the ionization probability is 
parameterized by the age of the carrier at the time when it triggers the avalanche process. We term such 
formulation an age-dependent analysis. In what follows (including the Appendix), we will derive sets of age-
dependent recurrence equations that enable us to calculate the mean gain, the excess noise factor, the 
probability mass function of the gain, the mean of the impulse-response function, as well as the breakdown 
probability, all under a dynamic electric field. 

4.1. Mean gain 
We define Z(x,s) (Y(x,s)) as the totality of all electrons and holes, including the parent carrier, initiated by an 
electron (hole), injected at location x with age s. Note that by convention Z(w,s) = Y(0,s) = 1 since an electron 
(hole) placed at the right (left) edge of the multiplication region will exit the multiplication region without 
ionizing. Now consider a parent electron-hole pair at location x and of age s. The age-dependent stochastic 
multiplication factor, M(x,s), defined as the total number of electron-hole pairs generated as a result of an 
electron-hole pair whose initial location in the multiplication region is x and whose ages are s, is simply 

(4) 

𝑀𝑀(𝑥𝑥, 𝑠𝑠) = 0.5[𝑍𝑍(𝑥𝑥, 𝑠𝑠) + 𝑌𝑌(𝑥𝑥, 𝑠𝑠)]. 
Note that in the special case of a SAM InGaAs-InP APD, for which holes are injected at the edge of the 
multiplication region at x = w and with age s ≥ 0 (recall that the age is always measured with respect to the 
launch instant of the dynamic electric field at time t = 0), then the stochastic age-dependent gain is given by 

(5) 

G(s) = M(w,s) = 0.5[1 + Y(w,s)]. 
We now derive equations that allow us calculate the statistics of the quantities Z(x,s) and Y(x,s). Once we find 
the first and second moments of Z and Y we can relate them to the age-dependent mean gain via Eqs. 
(4) and (5), and to the age-dependent excess noise factor as shown in the Appendix. Suppose that the first 
ionization for a parent electron of age spositioned at location x occurs at location Xe = ξ, where x≤ξ≤w. Note that 
the instant of this ionization (measured from the launch instant of the dynamic electric field at time t = 0) is s + τ, 
where τ = (ξ-x)/ve is the transit time of this electron in the multiplication region. Note that the two offspring 
electrons at ξ, who are born with common age s + τ, will independently generate Z1(ξ,s + τ) and Z2(ξ,s + τ) 
carriers, respectively. On the other hand, the offspring hole, whose age at birth is also s + τ, will generate Y(ξ,s 
+ τ) carriers independently of Z1(ξ, s + τ) and Z2(ξ, s + τ). Thus, conditional on the event that the first impact 
ionization for the parent electron occurs at location ξ, the sum Z1(ξ,s + τ) + Z2(ξ, s + τ) + Y(ξ,s + τ) will simply 
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amount to Z(x,s). Since we can always express the mean of Z(x,s) as the expectation of the conditional mean 
(given that the first ionization of the parent electron occurs at location Xe), we can write E[Z(x,s)] as an iterated 
expectation E[E[Z(x,s) | Xe ]] by conditioning first on the location of the first ionization. Hence, 

(6) 

E[𝑍𝑍(𝑥𝑥, 𝑠𝑠)] = E�E[𝑍𝑍(𝑥𝑥, 𝑠𝑠)|𝑋𝑋𝑒𝑒]�

              = E �𝑍𝑍1 �𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

� + 𝑍𝑍2 �𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

� + 𝑌𝑌 �𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

�� ,
 

where the symbol “E” denotes expectation. Now if we define the notation for the mean of the quantities 
as z(x,s) = E[Z(x,s)] and y(x,s) = E[Y(x,s)], then the expression on the right hand side of Eq. (6) can be cast as 

(7) 

𝑧𝑧(𝑥𝑥, 𝑠𝑠) = E �2𝑧𝑧 �𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

� + 𝑦𝑦 �𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

��. 

By using the pdf in (2a) to carry out the averaging over Xe in (7) while taking into account the scenario when the 
parent electron may not impact ionize at all, we obtain the integral equation 

(8a) 

𝑧𝑧(𝑥𝑥, 𝑠𝑠) = � ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉
∞

𝑤𝑤
+ � [2𝑧𝑧(𝜉𝜉, 𝑠𝑠 + (𝜉𝜉 − 𝑥𝑥)/𝑣𝑣𝑒𝑒)

𝑤𝑤

𝑥𝑥
+ 𝑦𝑦(𝜉𝜉, 𝑠𝑠 + (𝜉𝜉 − 𝑥𝑥)/𝑣𝑣𝑒𝑒)]ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉

0 ≤ 𝑥𝑥 ≤ 𝑤𝑤, 𝑠𝑠 ≥ 0.
 

The first term on the right side of Eq. (8a) captures the case when the parent electron exits the multiplication 
region without impact ionizing. 

We can repeat the above argument while starting from a parent hole at ξ and of age s instead of a parent 
electron. In this case, we realize that the stochastic location of the first ionization of the parent hole, Xh, can be 
in the interval [0, x] (instead of [x, w] as in the case of the parent electron). The resulting integral equation 
for y(x,s) is 

(8b) 

𝑦𝑦(𝑥𝑥, 𝑠𝑠) = � ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉
∞

𝑥𝑥
+ � [2𝑦𝑦(𝜉𝜉, 𝑠𝑠 + (𝑥𝑥 − 𝜉𝜉)/𝑣𝑣ℎ)

𝑥𝑥

0
+ 𝑧𝑧(𝜉𝜉, 𝑠𝑠 + (𝑥𝑥 − 𝜉𝜉)/𝑣𝑣ℎ)]ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉

0 ≤ 𝑥𝑥 ≤ 𝑤𝑤, 𝑠𝑠 ≥ 0.
 

The pair of linear coupled integral equation in (8) can be solved numerically, e.g., by the method of iterations. 

The age-dependent mean multiplication factor, m(x,s) = E[M(x,s)], can be calculated using the identity m(x,s) = 
0.5[z(x,s) + y(x,s)], and the age-dependent mean gain, ga(s) = E[G(s)], is simply m(w,s) in the case of a hole-
injection APD. As a special case, the usual mean gain, g, of an APD under a static bias is simply g = ga(0). 

It is also possible to derive integral equations characterizing the excess noise factor, the probability mass 
function of the multiplication factor, as well as the probability of breakdown under dynamic biasing. Since these 
quantities are not used in gain-bandwidth product calculations and the results presented in Section 5, they are 
included for completeness in the Appendix. 
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4.2. Mean impulse response function 
We begin by defining Ie(t,x,s), the age-dependent stochastic impulse-response function at time tinitiated by 
an electron injected at location x and with age s. Similarly, Ih(t, x, s) is the stochastic age-dependent impulse-
response function at time t, initiated by a hole injected at location xwith age s. Mathematically, if we 
define ie(t,x,s) and ih(t,x,s) as the mean quantities of Ie(t,x,s) and Ih(t,x,s), respectively, then we can write 
that conditional mean of Ie(t,x,s) given that the first ionization of the parent electron occurs at location Xe as 

(9a) 

E[𝐼𝐼𝑒𝑒(𝑡𝑡, 𝑥𝑥, 𝑠𝑠)|𝑋𝑋𝑒𝑒] = 2𝑖𝑖𝑒𝑒 �𝑡𝑡,𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

� + 𝑖𝑖ℎ �𝑡𝑡,𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

�, 

where x ≤ Xe ≤ w. On the other hand, when no ionization occurs (when Xe > w), then 

(9b) 

E[𝐼𝐼𝑒𝑒(𝑡𝑡, 𝑥𝑥, 𝑠𝑠)|𝑋𝑋𝑒𝑒 > 𝑤𝑤] = �
𝑞𝑞𝑣𝑣𝑒𝑒
𝑤𝑤 � �𝑢𝑢(𝑡𝑡)− 𝑢𝑢 �𝑡𝑡–

𝑤𝑤 − 𝑥𝑥
𝑣𝑣𝑒𝑒

��, 

which is simply a rectangular pulse of duration equal to the transit time of the parent electron at x as it drifts 
across the remainder of the multiplication region. When we average Eq. (9) over all possible values of Xe, we 
obtain the following integral equation 

(10a) 

𝑖𝑖𝑒𝑒(𝑡𝑡, 𝑥𝑥, 𝑠𝑠) = �
𝑞𝑞𝑣𝑣𝑒𝑒
𝑤𝑤
� �𝑢𝑢(𝑡𝑡) − 𝑢𝑢 �𝑡𝑡 −

𝑤𝑤 − 𝑥𝑥
𝑣𝑣𝑒𝑒

��� ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉
∞

𝑤𝑤

+� �2𝑖𝑖𝑒𝑒 �𝑡𝑡 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉, 𝑠𝑠 +
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

� + 𝑖𝑖ℎ �𝑡𝑡 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉, 𝑠𝑠 +
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

��
min(𝑤𝑤,𝑥𝑥+𝑣𝑣𝑒𝑒𝑡𝑡)

𝑥𝑥
ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉

 

A similar integral equation can be obtained for ih(t,x,s): 

(10b) 

𝑖𝑖ℎ(𝑡𝑡, 𝑥𝑥, 𝑠𝑠) = �
𝑞𝑞𝑣𝑣ℎ
𝑤𝑤
� �𝑢𝑢(𝑡𝑡) − 𝑢𝑢 �𝑡𝑡 −

𝑥𝑥
𝑣𝑣ℎ
��� ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉

∞

𝑥𝑥

+� �2𝑖𝑖ℎ �𝑡𝑡 −
𝑥𝑥 − 𝜉𝜉
𝑣𝑣ℎ

, 𝜉𝜉, 𝑠𝑠 +
𝑥𝑥 − 𝜉𝜉
𝑣𝑣ℎ

� + 𝑖𝑖𝑒𝑒 �𝑡𝑡 −
𝑥𝑥 − 𝜉𝜉
𝑣𝑣ℎ

, 𝜉𝜉, 𝑠𝑠 +
𝑥𝑥 − 𝜉𝜉
𝑣𝑣ℎ

��
𝑥𝑥

max(0,𝑥𝑥−𝑣𝑣ℎ𝑡𝑡)
ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉

 

The two coupled integral equations can be solved numerically using a simple iterative approach. The mean 
impulse-response function, i(t,s), (in the case of a hole injection to the multiplication region at x = 0) for a 
photon absorbed at time s is then obtained using i(t,s) = ih(t,w,s). 

We note that when the field is static, the dependence on the age variable s will absent and all the integral 
equations in this section collapse to their static-field counterparts. For example, Eqs. (10a) and (10b) collapse 
respectively to Eqs. (5) and (6) in [27], and Eqs. (8a) and (8b)collapse respectively to (10) and (11) in [15]. 

4.3. Pulse response, pulse-response bandwidth and pulse-integrated mean gain 
We saw earlier that under dynamic biasing, the mean impulse response function, i(t,s), is dependent on the birth 
time s of the photogenerated parent carrier triggering the avalanche (or equivalently on the arrival time of the 
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absorbed photon if we ignored the time it takes the carrier to be transported from the absorber to the edge of 
the multiplication region). Now in on-off keying optical communication, photons arrive randomly within each 
optical pulse according to a temporal distribution that is governed by the pulse’s power profile within the bit. 
Hence, the appropriate quantity to look at when assessing ISI would be the pulse-responsefunction, ip(t), rather 
than an impulse response. If we assume that the time origin (namely the launch time of the electric field) is the 
beginning of the bit, we can express ip(t) as 

(11) 

𝑖𝑖𝑝𝑝(𝑡𝑡) = � 𝑖𝑖(𝑡𝑡, 𝑠𝑠)𝑝𝑝𝑝𝑝ℎ(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑇𝑇

0
, 

where pph(s) is the probability density function of arriving photons within an optical pulse of duration T. Note 
that if the electric field is static, then i(t,s) is simply i(t-s), and ip(t) would become simply the convolution of i(t) 
and pph(t). An alternative way to view ip(t) is to regard it as a photon-arrival time averaged impulse response. 
Since early and late photons have long and short impulse responses, respectively, it would make sense to look at 
the average of the impulse response functions over all possible photon arrival times within each received optical 
pulse. In any event, by calculating the 3dB bandwidth of the Fourier transform of ip(t), we can obtain the pulse-
response bandwidth, Bp, which combines the APD’s avalanche-duration limited bandwidth with the bandwidth 
of the optical pulse in each bit of duration T. By defining the pulse-averaged gain, 

(12) 

�̅�𝑔𝑝𝑝 = 𝑇𝑇−1 � 𝑔𝑔𝑎𝑎
𝑇𝑇

0
(𝑠𝑠)𝑑𝑑𝑠𝑠 

which is simply the average of the age-dependent mean gain, ga(s), we can introduce the pulse-integrated gain-
bandwidth product, GBPp, as 

(13) 

𝐺𝐺𝐺𝐺𝑃𝑃𝑝𝑝 = 𝑔𝑔𝑝𝑝𝐺𝐺𝑝𝑝. 

Note that GBPp collapses to the usual gain bandwidth product whenever the biasing is static. 

We end this section by reiterating that under bit-synchronous periodic biasing, the bit-integrated photocurrent 
(or charge per bit) is proportional to the product of the pulse-gain factor �̅�𝑔𝑝𝑝 and the average number n of 
detected photons in the optical pulse in each bit. In other words, under bit-synchronous periodic biasing, the 
output (charge) of an integrate-and-dump receiver remains proportional to the energy in the optical pulse in 
each bit. Thus, while the dynamically biased APD may not be directly applicable to simple analog detection since 
the APD’s avalanche gain is time variant, it is a perfect fit to digital communications as the integrate-and-dump 
receiver maintains its linearity. 

5. Results 
We will limit our results to sinusoidal biasing 

(14) 

𝑉𝑉𝐵𝐵𝐵𝐵(𝑡𝑡) =  𝐺𝐺 + 𝐶𝐶sin(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜙𝜙), 



where fc is set to be equal to the bit transmission rate, fc = R. The quantities B, C and ϕ are free parameters that 
can be selected to control the overall multiplication factor and also to maximize the benefit of dynamic biasing 
in minimizing the tail of the pulse response of the APD. As described earlier, it is implicitly assumed that the bias 
signal is synchronous with the optical pulse stream. In practice, a clock recovery circuit and a phase lock loop 
must be employed to maintain synchronization. In addition, for simplicity we shall assume a spatially uniform 
electronic field, E(t) = VBD(t)/w, in the multiplication region of the APD. 

5.1. Mean impulse-response function under sinusoidal biasing 
In our calculations, we considered a SAM APD, as shown in Fig. 2, with an InP multiplication layer of width w = 
200 nm. The ionization parameters for InP were extracted from [28] and they are listed for convenience in Table 
1 . The electron and hole saturation velocities are assumed as 6.7 x 106 cm/s. For reference, we first calculated 
the mean impulse-response function, triggered by a hole injected at position x = w = 200 nm, under a static bias 
of VB = 14.30 V. The 3dB bandwidth was then extracted from the Fourier transform of the impulse response. The 
calculations of the mean impulse-response function were performed according to the integral Eqs. 
(6), (10), (11) and (12) in [16]; these equations were solved numerically using a simple linear-iteration 
method. Figure 3 shows five mean impulse-response functions triggered by holes of different trigger instants 
(i.e., with different ages). Naturally, aside from the time delays corresponding to the instants at which the holes 
trigger the avalanche, the impulse-response functions are all identical in shape. We also calculated the mean 
gain by solving the integral Eqs. (10) and (11) in [15]; these yielded a mean gain of g = 28 for this device under 
the same constant bias of VB = 14.30 V. The usual gain-bandwidth product for this device is found to be 238 GHz, 
which is the same as the pulse-integrated gain-bandwidth product, GBPp, since the field is static in this case. 

Table 1. Ionization Parameters for InP [28] 
 

A [cm−1] Ec [V/cm] m Eth [eV] 
Electron 1.41 × 106 1.69 × 106 1.23 2.8 
Hole 2.11 × 106 1.77 × 106 1.15 3.0 

 

 
Fig. 3 Mean impulse-response functions triggered by a hole under a constant electric field of VB = 14.30 V as a 
function of the integer multiples of the transit time, which is simply v/w = 2.985 ps. Different curves correspond 
to different ages (in transit times) of the initiating hole: red: age s = 0; blue: age s = 0.75; black: age s = 1.25; 
magenta: age s = 1.9; and cyan: age s = 2.6. The mean gain is calculated as 28 for each case. As expected these 
curves are simply shifted versions of one another. 
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The calculation of the age-dependent impulse response function in the case of the dynamic bias is shown in Fig. 
4 (top) for different values of the age variable s. These curves were obtained by solving (10a) and (10b) 
numerically using the method of iterations. The dynamic electric field profile is also shown in Fig. 4 (bottom). 
The transit time is simply v/w = 2.985 ps. Note that the period of dynamic bias is equal to 5.5 transit times. 
(Here, the width of the optical pulse is 8.3 ps, as in a 60-Gbps NRZ bit stream.) The sinusoidal-biasing parameters 
were selected as follows: B = 13 V, C = 6 V, and ϕ = 0. These parameters were chosen, in part, so that the pulse-
integrated gain, �̅�𝑔𝑝𝑝, is approximately 28, making the static and dynamic biasing schemes equivalent in our 
example from a “total multiplication-gain” perspective. For example, the curve with s = 4 transit times (green 
curve) corresponds to a mean impulse response due to a parent hole of age 4 transit times after the launch of 
the bias at time t = 0. On the other hand, the curve with s = 0 transit times (red curve) corresponds to a parent 
hole of age 0. It is important to note the change in the shape of the impulse response function as a result of 
dynamic biasing. Unlike the static-bias case, the impulse response corresponding to s = 0 no longer peaks at the 
parent hole’s transit time (i.e., one transit time after the trigger instant) but instead it peaks at a later time in 
response to the increase in the instantaneous electric field in the multiplication region. Another interesting point 
is that the weakest impulse response is obtained when the age of the hole is approximately s = 2.6 transit times 
(magenta curve). This observation suggests that the sinusoidal dynamic bias should be delayed appropriately in 
order for the last photon in the pulse to have the weakest impulse response. The point to be made here is that 
the time delay in the dynamic bias must be optimized to produce the best pulse-integrated gain-bandwidth 
product. We have found empirically that a phase angle of ϕ = π/3 gives good results. 

 
Fig. 4 Calculated age-dependent impulse response function under a sinusoidal dynamic bias. Different curves 
correspond to different ages (in transit times) of the initiating hole: red: age s = 0; black: age s = 1.4; magenta: 
age s = 2.6; and green: age s = 4. The dynamic-biasing parameters used are: B = 13 V, C = 6 V and ϕ = 0. 
 

Figure 5 shows the calculated age-dependent impulse-response function under sinusoidal biasing using the 
same dc and ac voltages as those used in Fig. 4 but with the phase angle selected as ϕ = π/3. It is to be noted 
that due to the combination of the modulating field and the initial time delay in the bias waveform, for small 
values of the parent-hole’s age (or equivalently for early photons) the tail of the impulse response is far shorter 
than that for the static-bias impulse response. Moreover, the gain associated with small s values is quite high as 
seen below. This is due to the rise in the field initially, where a high gain is built up, followed by a drop in the 
field causing the shortening of the impulse response as the probability of the avalanche terminating is high. For 
example, when s = 0 the age-dependent bandwidth is 62 GHz and the age-dependent mean gain is 82, while in 
the static-bias case the bandwidth is 8.5 GHz and the gain is 28. Meanwhile, if we look at larger age values 
(corresponding to photons arriving late in the pulse), we will see that the gain is generally small and so is the 
bandwidth. For example, at approximately s = 5 the age-dependent bandwidth is 23 GHz while the age-
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dependent mean gain is 3. This is because carriers have a reduced probability of impact ionizing due to the low 
field in the second half of the pulse. 

 
Fig. 5 Calculated age-dependent impulse response function under dynamic biasing using the following values for 
the dynamic-bias parameters: B = 13 V, C = 6 V and ϕ = π/3. 
 

5.2. Gain-bandwidth-product improvement 
To see the net effect of the dynamic biasing scheme used in Fig. 5 on the pulse-integrated gain bandwidth 
product, we calculated the mean pulse-response function, ip(t), defined in (11). Figure 6 shows ip(t) once with 
the sinusoidal dynamic-field profile used in Fig. 5, and once with the static reverse bias. (For simplicity, in this 
example pph(s) in (11) is assumed to be constant at 1/T, namely, we assume a uniformly distributed random 
stream of photons). Note that this is simply the average of the age-dependent impulse responses. We observe 
that in comparison to ip(t) for the static bias, the tail of ip(t) in the sinusoidal-bias case is much reduced. The 
pulse-integrated bandwidth in the sinusoidal-bias case is 43.3 GHz, compared to 8.5 GHz in the static-bias case. 
The pulse-integrated gain in all three cases is about 28. Hence, the calculations predict an enhancement in the 
pulse-integrated gain-bandwidth product from 238 GHz in the static-bias case to a pulse gain-bandwidth product 
of 1169 GHz in the dynamic-bias case. This shows that a sinusoidally biased APD with the bias parameters 
described earlier can increase the pulse gain-bandwidth product of an APD by a factor of 5 compared to the 
same APD operated under the conventional static biasing scheme. We expect the results do extend to thicker 
multiplication regions provided that the ratio of the bit duration to the transit time is kept constant. 
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Fig. 6 Calculated pulse response due to a 8.3-ps rectangular optical pulse with the shown sinusoidal-dynamic 
bias function. The pulse response corresponding to a conventional static bias is also shown for comparison. A 
five-fold enhancement in the pulse-integrated gain-bandwidth-product is predicted. 
 

While the excess noise factor is not calculated in this paper, Herbert and Chidley [13] have shown via Monte-
Carlo simulations that the excess noise factor can be reduced as long as the period of the sinusoidal bias is in 
excess of 4 times the transit time of each carrier, which would allow the avalanche process to quench. (The work 
of Herbert and Chidley followed their earlier papers on IMPATTs, which too exhibit a dynamic field in their 
multiplication region.) In fact, they showed that this reduction is insensitive to the ratio β/α, which is totally 
different from the behavior in the constant-field scenario. In the future we will further investigate the behavior 
of the overall excess noise factor analytically by using the recursive method for calculating the age-dependent 
excess noise factor as described in the Appendix. 

6. Conclusions 
Although static biasing has been the norm in operating linear-mode APDs in optical receivers for decades, there 
is much to be gained from modulating the impact ionization process, by means of dynamic biasing, so as to 
minimize the avalanche duration while maintaining a high muiltiplication factor. In fact, the calculations carried 
out in this paper have shown that static biasing may have been an overlooked factor in preventing APDs from 
being used in 40 Gbps lightwave systems. Here, we propose a bit-synchronous sinusoidal biasing scheme that 
offers two main advantages over static biasing in on-off-keying optical receivers. First, photons arriving early in 
an optical pulse generate avalanches with very high gains and avalanche durations that almost vanish by the end 
of the bit interval. Second, photons that arrive in the later part of an optical pulse generate low gains and very 
short avalanche durations. Consequently, high overall gain is achieved without inducing long avalanche 
durations and intersymbol interference. To rigorously justify the benefits of dynamic biasing, we have developed 
the first theory for the avalanche multiplication process under dynamic electric fields. The model allows us to 
analytically calculate the statistics of the avalanche multiplication factor, the impulse response function and the 
breakdown probability under arbitrary, dynamic electric fields. Our calculations predict that by using a bit-
synchronous sinusoidal biasing scheme the pulse-integrated gain-bandwidth product of an InGaAs-InP SAM APD 
can be improved by a factor of 5 compared to the same APD operated under the conventional static biasing. 

The proposed approach introduces a new paradigm for the operation and design of linear-mode APDs for high-
speed lightwave systems and adds a new dimension to the traditional material- and structure-based 
approaches. Our approach is essentially APD-agnostic and can be used to improve the gain-bandwidth product 
of any APD that has a poor avalanche-duration performance beyond traditional limits inherited from the 
conventional static biasing. Another projected benefit of dynamic biasing is that it may allow the relaxation of 
the often stringent requirements on the minimum width of the multiplication region, as normally done to 
enhance the APD speed. This, in turn, would lead to a reduction of the electric field in the multiplication region, 
which reduces tunneling current. Future efforts will focus on implementation of the proposed dynamic scheme 
as well as the rigorous analysis of the receiver sensitivity under bit-synchronous dynamic biasing. 

Collaborative work is currently underway to demonstrate the benefits of dynamic biasing in a high-speed optical 
receiver. To this end, the dynamic-bias signal is generated from the clock pulse that is obtained by the 
clock/data recovery circuit on the receiver. Using an adjustable delay line, the generated dynamic bias must be 
properly aligned with the center of the data eye pattern. Care must be taken in designing the transimpedance 
amplifier, since the dynamic bias signal will be injected into the amplification path. Elimination of the dynamic 
bias at the output of the APD can be achieved by a number of methods that are being investigated. 
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Commercially available high voltage high electron mobility transistors (e.g., GaN HEMTs) can be used to produce 
the necessary voltage swing for the APD bias driver. 

Appendix 
For completeness, we present for the first time the theory for calculating the excess noise factor, the probability 
mass function of the gain, and the breakdown probability all under arbitrary, dynamic biasing. 

A.1. Age-dependent excess noise factor 
Following the notation used in Section 4, we begin by deriving integral equations for the second moments z2(x,s) 
= E[Z(x,s)2] and y2(x,s) = E[Y(x,s)2]. Note that the second moment of the multiplication factor, m2(x,s) = E[M(x,s)2], 
can be related to z2(x,s) and y2(x,s) using the identity m2(x,s) = 0.25[z2(x,s) + y2(x,s) + 2z(x,s) y(x,s)], and the age-
dependent excess noise factor, Fa(s) ≡ m2(w,s) / ga(s)2, is given by 

(A1) 

𝐹𝐹𝑎𝑎(𝑠𝑠) =
𝑦𝑦2(𝑤𝑤, 𝑠𝑠) + 2𝑦𝑦(𝑤𝑤, 𝑠𝑠) + 1

[𝑦𝑦(𝑤𝑤, 𝑠𝑠) + 1]2 . 

Next, we proceed to derive integral equations characterizing z2(x,s) and y2(x,s). Since we can always express the 
second moment of Z(x,s) as the expectation of the conditional second moment of Z(x,s) given that the first 
ionization of the parent electron (triggering Z(x,s)) occuring at location Xe, we can write 

(A2) 

E[𝑍𝑍(𝑥𝑥, 𝑠𝑠)2] = E�E[𝑍𝑍(𝑥𝑥, 𝑠𝑠)2|𝑋𝑋𝑒𝑒]�

                   = E ��𝑍𝑍1 �𝑋𝑋𝑒𝑒, 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

� + 𝑍𝑍2 �𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

� + 𝑌𝑌 �𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

��
2

�

                   = E �𝑍𝑍1 �𝑋𝑋𝑒𝑒, 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

�
2

+ 𝑍𝑍2 �𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

�
2

+ 𝑌𝑌 �𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

�
2

�

                    +2E �𝑍𝑍1 �𝑋𝑋𝑒𝑒, 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

� 𝑍𝑍2 �𝑋𝑋𝑒𝑒, 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

� + 2𝑍𝑍1 �𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

� 𝑌𝑌 �𝑋𝑋𝑒𝑒, 𝑠𝑠 +
𝑋𝑋𝑒𝑒𝑥𝑥
𝑣𝑣𝑒𝑒

��

                    +2E �𝑍𝑍2 �𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

� 𝑌𝑌 �𝑋𝑋𝑒𝑒, 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

�� ,

 

which simplifies to 

(A3) 

𝑧𝑧2(𝑥𝑥, 𝑠𝑠) = E �2𝑧𝑧2 �𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

� + 𝑦𝑦2 �𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

� + 2𝑧𝑧 �𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

�
2

+ 4𝑧𝑧 �𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

�𝑦𝑦 �𝑋𝑋𝑒𝑒 , 𝑠𝑠 +
𝑋𝑋𝑒𝑒 − 𝑥𝑥
𝑣𝑣𝑒𝑒

��. 

Upon writing down the averaging over Xe explicitly in terms of the pdf of Xe, we obtain 

(A4a) 



𝑧𝑧2(𝑥𝑥, 𝑠𝑠) = � ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉
∞

𝑤𝑤
+ � [2𝑧𝑧2(𝜉𝜉, 𝑠𝑠 + (𝜉𝜉 − 𝑥𝑥)/𝑣𝑣𝑒𝑒)

𝑤𝑤

𝑥𝑥
+ 𝑦𝑦2 �𝜉𝜉, 𝑠𝑠 +

𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

�

    + 4𝑧𝑧(𝜉𝜉, 𝑠𝑠 + (𝜉𝜉 − 𝑥𝑥)/𝑣𝑣𝑒𝑒)𝑦𝑦(𝜉𝜉, 𝑠𝑠 + (𝜉𝜉 − 𝑥𝑥)/𝑣𝑣𝑒𝑒) + 2𝑧𝑧(𝜉𝜉]ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉,
0 ≤ 𝑥𝑥 ≤ 𝑤𝑤, 𝑠𝑠 ≥ 0.

 

Similarly, we can obtain a recursive equation for y2(x,s): 

(A4b) 

𝑦𝑦2(𝑥𝑥, 𝑠𝑠) = � ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉
∞

𝑥𝑥
+ � [2𝑦𝑦2(𝜉𝜉, 𝑠𝑠 + (𝑥𝑥 − 𝜉𝜉)/𝑣𝑣ℎ)

𝑥𝑥

0
+ 𝑧𝑧2(𝜉𝜉, 𝑠𝑠 + (𝑥𝑥 − 𝜉𝜉)/𝑣𝑣ℎ)

    + 4𝑧𝑧(𝜉𝜉, 𝑠𝑠 + (𝑥𝑥 − 𝜉𝜉)/𝑣𝑣ℎ)𝑦𝑦(𝜉𝜉, 𝑠𝑠 + (𝑥𝑥 − 𝜉𝜉)/𝑣𝑣ℎ) + 4𝑦𝑦(𝜉𝜉]ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉,
0 ≤ 𝑥𝑥 ≤ 𝑤𝑤, 𝑠𝑠 ≥ 0.

 

The pair of linear coupled integral equation in (A4) can be solved numerically once the quantities z(x,s) and y(x,s) 
have already been computed by first solving the pair of equations in (8). 

A.2. Age-dependent breakdown probability 
Here we develop recursive equations that characterize the probability that a parent carrier triggers breakdown, 
that is, the probability that infinitely many offspring carriers are generated. To this end, and following the 
general recursive approach [15], we notice that if an electron at position x in the multiplication region and of 
age s (relative to the launch instant of the dynamic electric field) impact ionizes for the first time at location ξ, 
then the probability that the parent electron generates a finite number of offspring carriers is precisely the 
product of the probabilities that each of the two offspring electrons and offspring hole created at ξ with age s+ 
(ξ-x)/ve generates a finite number of offspring carriers. (Implicit in this statement is that each carrier acts 
independently of the other carries, which is a correct assumption since in this paper we do not include any 
feedback effect from the created charges on the electric field.) Note that in the special case when the parent 
electron exits the multiplication region without ionizing, the conditional probability that produces a finite 
number of carriers is trivially equal to one. 

Mathematically, define PZ(x,s) = P{Z(x,s) < ∞} and PY(x,s) = P{Y(x,s) < ∞}, and note that P{Z(x,s) < ∞ | Xe = ξ} = 
P{Z(ξ,s + (ξ-x)/ve)) < ∞}2 P{Y(ξ,s + (ξ-x)/ve.)) < ∞}, while P{Z(x,s) < ∞ | Xe > w} = 1. By averaging the above equation 
over all possible Xe we obtain 

(A5a) 

𝑃𝑃𝑍𝑍(𝑥𝑥, 𝑠𝑠) = � ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉
∞

𝑤𝑤
+ � 𝑃𝑃𝑍𝑍(𝜉𝜉, 𝑠𝑠 + (𝜉𝜉 − 𝑥𝑥)/𝑣𝑣𝑒𝑒)2

𝑤𝑤

𝑥𝑥
𝑃𝑃𝑌𝑌(𝜉𝜉, 𝑠𝑠 + (𝜉𝜉 − 𝑥𝑥)/𝑣𝑣𝑒𝑒)ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉

0 ≤ 𝑥𝑥 ≤ 𝑤𝑤, 𝑠𝑠 ≥ 0.
 

A similar argument can lead to the equation 

(A5b) 

𝑃𝑃𝑌𝑌(𝑥𝑥, 𝑠𝑠) = � ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉
∞

𝑥𝑥
+ � 𝑃𝑃𝑌𝑌(𝜉𝜉, 𝑠𝑠 + (𝑥𝑥 − 𝜉𝜉)/𝑣𝑣ℎ)2

𝑥𝑥

0
𝑃𝑃𝑍𝑍(𝜉𝜉, 𝑠𝑠 + (𝑥𝑥 − 𝜉𝜉)/𝑣𝑣ℎ)ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉

0 ≤ 𝑥𝑥 ≤ 𝑤𝑤, 𝑠𝑠 ≥ 0.
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Once PZ(x,s) and PZ(x,s) are calculated by solving the nonlinear coupled integral equations in (A5) numerically 
(using iterations, for example), the breakdown probability is calculated. For example, for a hole-injection APD, 
the age-dependent breakdown probability for a photon absorbed at time s, is simply 

(A6) 

𝑃𝑃𝐵𝐵(𝑠𝑠) = 1 − 𝑃𝑃𝑍𝑍(𝑤𝑤, 𝑠𝑠). 

A.3. Probability mass function of the age-dependent multiplication factor 
Following the same conditioning approach as in A.1, one can derive integral equations for the probability mass 
function of the processes Z(x,s) and Y(x,s). Here we state the equations without proof. Let fZ(x,s,m) = P{Z(x,s) 
= m} and fY(x,s,m) = P{Y(x,s) = m}, m = 1, 2, 3, …. Then, they must satisfy the following coupled integral equations 

(A7a) 

𝑓𝑓𝑍𝑍(𝑥𝑥, 𝑠𝑠,𝑚𝑚) = 𝛿𝛿𝑚𝑚−1 � ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉
∞

𝑤𝑤

     + � 𝑓𝑓𝑍𝑍(𝜉𝜉, 𝑠𝑠 + (𝜉𝜉 − 𝑥𝑥)/𝑣𝑣𝑒𝑒 ,𝑚𝑚)
𝑤𝑤

𝑥𝑥
∗ 𝑓𝑓𝑍𝑍(𝜉𝜉, 𝑠𝑠 + (𝜉𝜉 − 𝑥𝑥)/𝑣𝑣𝑒𝑒 ,𝑚𝑚) ∗ 𝑓𝑓𝑌𝑌(𝜉𝜉, 𝑠𝑠 + (𝜉𝜉 − 𝑥𝑥)/𝑣𝑣𝑒𝑒 ,𝑚𝑚)

        × ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉,  0 ≤ 𝑥𝑥 ≤ 𝑤𝑤, 𝑠𝑠 ≥ 0, 𝑚𝑚 = 1,2,3, …

 

and 

(A7b) 

𝑓𝑓𝑌𝑌(𝑥𝑥, 𝑠𝑠,𝑚𝑚) = 𝛿𝛿𝑚𝑚−1 � ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉
∞

𝑥𝑥

     + � 𝑓𝑓𝑌𝑌(𝜉𝜉, 𝑠𝑠 + (𝑥𝑥 − 𝜉𝜉)/𝑣𝑣ℎ,𝑚𝑚)
𝑥𝑥

0
∗ 𝑓𝑓𝑌𝑌(𝜉𝜉, 𝑠𝑠 + (𝑥𝑥 − 𝜉𝜉)/𝑣𝑣ℎ,𝑚𝑚) ∗ 𝑓𝑓𝑍𝑍(𝜉𝜉, 𝑠𝑠 + (𝑥𝑥 − 𝜉𝜉)/𝑣𝑣ℎ,𝑚𝑚)

        × ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉,  0 ≤ 𝑥𝑥 ≤ 𝑤𝑤, 𝑠𝑠 ≥ 0, 𝑚𝑚 = 1,2,3, …

 

where δk = if k=0 and it is zero otherwise, and “*” denotes discrete convolution with respect to the variable m. 
An alternative form of (A7) can be obtained by taking the discrete (time) Fourier transform with respect to the 
discrete variable m, which yields the characteristic function. More precisely, define 

(A8a) 

𝐹𝐹𝑍𝑍(𝑥𝑥, 𝑠𝑠,𝜔𝜔) = � 𝑓𝑓𝑍𝑍(𝑥𝑥, 𝑠𝑠,𝑚𝑚)𝑒𝑒𝑗𝑗𝑗𝑗𝑚𝑚
∞

𝑚𝑚=0

,𝐹𝐹𝑌𝑌(𝑥𝑥, 𝑠𝑠,𝜔𝜔) = � 𝑓𝑓𝑌𝑌(𝑥𝑥, 𝑠𝑠,𝑚𝑚)𝑒𝑒𝑗𝑗𝑗𝑗𝑚𝑚
∞

𝑚𝑚=0

, − 𝜋𝜋 < 𝜔𝜔 ≤ 𝜋𝜋,andobtain

𝐹𝐹𝑍𝑍(𝑥𝑥, 𝑠𝑠,𝜔𝜔) = 𝑒𝑒𝑗𝑗𝑗𝑗 � ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉
∞

𝑤𝑤
+ � 𝐹𝐹𝑍𝑍(𝜉𝜉, 𝑠𝑠 + (𝜉𝜉 − 𝑥𝑥)/𝑣𝑣𝑒𝑒 ,𝜔𝜔)2𝐹𝐹𝑌𝑌(𝜉𝜉, 𝑠𝑠 + (𝜉𝜉 − 𝑥𝑥)/𝑣𝑣𝑒𝑒 ,𝜔𝜔)

𝑤𝑤

𝑥𝑥
       × ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉,  0 ≤ 𝑥𝑥 ≤ 𝑤𝑤, 𝑠𝑠 ≥ 0, − 𝜋𝜋 < 𝜔𝜔 ≤ 𝜋𝜋

 

and 

(A8b) 

𝐹𝐹𝑌𝑌(𝑥𝑥, 𝑠𝑠,𝜔𝜔) = 𝑒𝑒𝑗𝑗𝑗𝑗 � ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉
∞

𝑥𝑥
+ � 𝐹𝐹𝑍𝑍(𝜉𝜉, 𝑠𝑠 + (𝑥𝑥 − 𝜉𝜉)/𝑣𝑣ℎ,𝑚𝑚)2𝐹𝐹𝑍𝑍(𝜉𝜉, 𝑠𝑠 + (𝑥𝑥 − 𝜉𝜉)/𝑣𝑣ℎ,𝑚𝑚)

𝑥𝑥

𝑜𝑜
       × ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝜉𝜉,  0 ≤ 𝑥𝑥 ≤ 𝑤𝑤, 𝑠𝑠 ≥ 0, − 𝜋𝜋 < 𝜔𝜔 ≤ 𝜋𝜋

 



Once the quantities characteristic functions are solved for numerically, the probability mass functions can be 
obtain by simply perform a Fourier-transform inversion, which can be implemented approximately by using the 
inverse discrete Fourier transform. 
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