1,215,488 research outputs found

    Structural and optical properties of MOCVD AllnN epilayers

    Get PDF
    7] M.-Y. Ryu, C.Q. Chen, E. Kuokstis, J.W. Yang, G. Simin, M. Asif Khan, Appl. Phys. Lett. 80 (2002) 3730. [8] D. Xu, Y. Wang, H. Yang, L. Zheng, J. Li, L. Duan, R. Wu, Sci. China (a) 42 (1999) 517. [9] H. Hirayama, A. Kinoshita, A. Hirata, Y. Aoyagi, Phys. Stat. Sol. (a) 188 (2001) 83. [10] Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, S.Y. Wang, Appl. Phys. Lett. 72 (1998) 710. [11] Ig-Hyeon Kim, Hyeong-Soo Park, Yong-Jo Park, Taeil Kim, Appl. Phys. Lett. 73 (1998) 1634. [12] K. Watanabe, J.R. Yang, S.Y. Huang, K. Inoke, J.T. Hsu, R.C. Tu, T. Yamazaki, N. Nakanishi, M. Shiojiri, Appl. Phys. Lett. 82 (2003) 718

    Some estimates of Wang-Yau quasilocal energy

    Full text link
    Given a spacelike 2-surface Σ\Sigma in a spacetime NN and a constant future timelike unit vector T0T_0 in R3,1\R^{3,1}, we derive upper and lower estimates of Wang-Yau quasilocal energy E(Σ,X,T0)E(\Sigma, X, T_0) for a given isometric embedding XX of Σ\Sigma into a flat 3-slice in R3,1\R^{3,1}. The quantity E(Σ,X,T0) E(\Sigma, X, T_0) itself depends on the choice of XX, however the infimum of E(Σ,X,T0) E(\Sigma, X, T_0) over T0 T_0 does not. In particular, when Σ\Sigma lies in a time symmetric 3-slice in NN and has nonnegative Brown-York quasilocal mass \mby(\Sigma), our estimates show that infT0E(Σ,X,T0)\inf\limits_{T_0}E(\Sigma, X, T_0) equals \mby (\Sigma). We also study the spatial limit of infT0E(Sr,Xr,T0) \inf\limits_{T_0}E(S_r,X_r,T_0), where SrS_r is a large coordinate sphere in a fixed end of an asymptotically flat initial data set (M,g,p)(M, g, p) and XrX_r is an isometric embeddings of SrS_r into R3R3,1\mathbb{R}^3 \subset \mathbb{R}^{3,1}. We show that if (M,g,p)(M, g, p) has future timelike ADM energy-momentum, then limrinfT0E(Sr,Xr,T0)\lim\limits_{r\to\infty}\inf\limits_{T_0}E(S_r,X_r,T_0) equals the ADM mass of (M,g,p)(M, g, p).Comment: 17 page

    Cayley graphs generated by small degree polynomials over finite fields

    No full text
    We improve upper bounds of F. R. K. Chung and of M. Lu, D. Wan, L.-P. Wang, X.-D. Zhang on the diameter of some Cayley graphs constructed from polynomials over finite fields
    corecore