4,179 research outputs found
3-D modeling and simulation of 2G HTS stacks and coils
Use of 2G HTS coated conductors in several power applications has become
popular in recent years. Their large current density under high magnetic fields
makes them suitable candidates for high power capacity applications such as
stacks, coils, magnets, cables and current leads. For this reason, modeling and
simulation of their electromagnetic properties is very desirable in the design
and optimization processes. For many applications, when symmetries allow it,
simple models consisting of 1D or 2D representations are well suited for
providing a satisfying description of the problem at hand. However, certain
designs such as racetrack coils and finite-length or non-straight stacks, do
pose a 3D problem that cannot be easily reduced to a 2D configuration. Full 3-D
models have been developed, but their use for simulating superconducting
devices is a very challenging task involving a large-scale computational
problem. In this work, we present a new method to simulate the electromagnetic
transient behavior of 2G HTS stacks and coils. The method, originally used to
model stacks of straight superconducting tapes or circular coils in 2D, is now
extended to 3D. The main idea is to construct an anisotropic bulklike
equivalent for the stack or coil, such that the geometrical layout of the
internal alternating structures of insulating, metallic, superconducting and
substrate layers is reduced while keeping the overall electromagnetic behavior
of the original device. Besides the aforementioned interest in modeling and
simulating 2G HTS coated conductors, this work gives a further step towards
efficient 3D modeling and simulation of superconducting devices for large scale
applications
Odd parity charge density-wave scattering in cuprates
We investigate a model where superconducting electrons are coupled to a
frequency dependent charge-density wave (CDW) order parameter Delta(w). Our
approach can reconcile the simultaneous existence of low energy Bogoljubov
quasiparticles and high energy electronic order as observed in scanning
tunneling microscopy (STM) experiments. The theory accounts for the contrast
reversal in the STM spectra between positive and negative bias observed above
the pairing gap. An intrinsic relation between scattering rate and
inhomogeneities follows naturally.Comment: 5 pages, 3 figure
A large-N analysis of the local quantum critical point and the spin-liquid phase
We study analytically the Kondo lattice model with an additional
nearest-neighbor antiferromagnetic interaction in the framework of large-N
theory. We find that there is a local quantum critical point between two
phases, a normal Fermi-liquid and a spin-liquid in which the spins are
decoupled from the conduction electrons. The local spin susceptibility displays
a power-law divergence throughout the spin liquid phase. We check the
reliability of the large-N results by solving by quantum Monte Carlo simulation
the N=2 spin-liquid problem with no conduction electrons and find qualitative
agreement. We show that the spin-liquid phase is unstable at low temperatures,
suggestive of a first-order transition to an ordered phase.Comment: 4 pages and 1 figur
Electron-phonon Interaction close to a Mott transition
The effect of Holstein electron-phonon interaction on a Hubbard model close
to a Mott-Hubbard transition at half-filling is investigated by means of
Dynamical Mean-Field Theory. We observe a reduction of the effective mass that
we interpret in terms of a reduced effective repulsion. When the repulsion is
rescaled to take into account this effect, the quasiparticle low-energy
features are unaffected by the electron-phonon interaction. Phonon features are
only observed within the high-energy Hubbard bands. The lack of electron-phonon
fingerprints in the quasiparticle physics can be explained interpreting the
quasiparticle motion in terms of rare fast processes.Comment: 4 pages, 3 color figures. Slightly revised text and references. Kondo
effect result added in Fig. 2 for comparison with DMFT dat
Single-particle spectra near a stripe instability
We analyze the single-particle spectra of a bi-layered electron system near a
stripe instability and compare the results with ARPES experiments on the Bi2212
cuprate superconductor near optimum doping, addressing also the issue of the
puzzling absence of bonding-antibonding splitting.Comment: Proceedings of the XXII International Conference on Low Temperature
Physics August 4-11, 1999, Espoo and Helsinki, Finland (minor changes to the
figure) Similar results in the Proceedings of the International Workshop on
``Electronic crystals, ECRYS-99'', May 31-June 5 1999, La Colle sur Loup
(France), J. Phys. IV France 9, Pr10-337 (1999
- …
