127 research outputs found

    Physical interactions between marine phytoplankton and PET plastics in seawater.

    Get PDF
    Plastics are the most abundant marine debris globally dispersed in the oceans and its production is rising with documented negative impacts in marine ecosystems. However, the chemical-physical and biological interactions occurring between plastic and planktonic communities of different types of microorganisms are poorly understood. In these respects, it is of paramount importance to understand, on a molecular level on the surface, what happens to plastic fragments when dispersed in the ocean and directly interacting with phytoplankton assemblages. This study presents a computer-aided analysis of electron paramagnetic resonance (EPR) spectra of selected spin probes able to enter the phyoplanktonic cell interface and interact with the plastic surface. Two different marine phytoplankton species were analyzed, such as the diatom Skeletonema marinoi and dinoflagellate Lingulodinium polyedrum, in absence and presence of polyethylene terephthalate (PET) fragments in synthetic seawater (ASPM), in order to insitu characterize the interactions occurring between the microalgal cells and plastic surfaces. The analysis was performed at increasing incubation times. The cellular growth and adhesion rates of microalgae in batch culture medium and on the plastic fragments were also evaluated. The data agreed with the EPR results, which showed a significant difference in terms of surface properties between the diatom and dinoflagellate species. Low-polar interactions of lipid aggregates with the plastic surface sites were mainly responsible for the cell-plastic adhesion by S. marinoi, which is exponentially growing on the plastic surface over the incubation time

    Cationic Imidazolium Polythiophenes: Effects of Imidazolium-Methylation on Solution Concentration-Driven Aggregation and Surface Free Energy of Films Processed from Solvents with Different Polarity

    Get PDF
    Cationic imidazolium-functionalized polythiophenes with single- or double-methylation of the imidazolium ring were used to study the impact of imidazolium-methylation on (i) the solution concentration-driven aggregation in the presence of paramagnetic probes with different ionic and hydrophobic constituents and (ii) their surface free energy (SFE) as spin-coated films deposited on plasma-activated glass. Electron paramagnetic resonance spectroscopy shows that the differences in film structuration between the polymers with different methylations originate from the early stages of aggregation. In the solid state, higher degree of imidazolium-methylation generates smaller values of total SFE, gamma S, (by around 2 mN/m), which could be relevant in optoelectronic applications. Methylation also causes a decrease in the polar contribution of gamma S (gamma Sp), suggesting that methylation decreases the polar nature of the imidazolium ring, probably due to the blocking of its H-bonding capabilities. The values of gamma S obtained in the present work are similar to the values obtained for doped films of neutral conjugated polymers, such as polyaniline, poly(3-hexylthiophene), and polypyrrole. However, imidazolium-polythiophenes generate films with a larger predominance of the dispersive component of gamma S (gamma Sd), probably due to the motion restriction in the ionic functionalities in a conjugated polyelectrolyte, in comparison to regular dopants. The presence of 1,4-dioxane increases gamma Sp, especially, in the polymer with larger imidazolium-methylation (and therefore unable to interact through H-bonding), probably by a decrease of the imidazolium-glass interactions. Singly-methylated imidazolium polythiophenes have been applied as electrode selective ("buffer") interlayers in conventional and inverted organic solar cells, improving their performance. However, clear structure-function guidelines are still needed for designing high-performance polythiophene-based interlayer materials. Therefore, the information reported in this work could be useful for such applications

    Dendronized Anionic Gold Nanoparticles: Synthesis, Characterization and Antiviral Activity

    Get PDF
    Anionic carbosilane dendrons decorated with sulfonate functions and with a thiol moiety at the focal point have been used to synthesize water soluble gold nanoparticles (AuNPs) by direct reaction of dendrons, gold precursor and reducing agent in water and also by place-exchange reaction. These nanoparticles have been characterized by nuclear magnetic resonance (NMR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV, elemental analysis, and Z potential. Also, the interacting ability of the anionic sulfonate functions was investigated by electron paramagnetic resonance (EPR) using copper(II) as a probe. It was found that the different structures and conformations of the AuNPs modulate the availability of sulfonate and thiol groups to be complexed by copper(II). Toxicity assays of AuNPs showed that those produced by direct reaction were less toxic than those obtained by ligand exchange. Inhibition of HIV-1 infection was higher for dendronized AuNPs than for dendrons.Ministerio de EconomĂ­a y EmpresaComunidad de MadridUniversidad de Alcal

    The role of molecular genetics in diagnosing familial hematuria(s)

    Get PDF
    Familial microscopic hematuria (MH) of glomerular origin represents a heterogeneous group of monogenic conditions involving several genes, some of which remain unknown. Recent advances have increased our understanding and our ability to use molecular genetics for diagnosing such patients, enabling us to study their clinical characteristics over time. Three collagen IV genes, COL4A3, COL4A4, and COL4A5 explain the autosomal and X-linked forms of Alport syndrome (AS), and a subset of thin basement membrane nephropathy (TBMN). A number of X-linked AS patients follow a milder course reminiscent of that of patients with heterozygous COL4A3/COL4A4 mutations and TBMN, while at the same time a significant subset of patients with TBMN and familial MH progress to chronic kidney disease (CKD) or end-stage kidney disease (ESKD). A mutation in CFHR5, a member of the complement factor H family of genes that regulate complement activation, was recently shown to cause isolated C3 glomerulopathy, presenting with MH in childhood and demonstrating a significant risk for CKD/ESKD after 40 years old. Through these results molecular genetics emerges as a powerful tool for a definite diagnosis when all the above conditions enter the differential diagnosis, while in many at-risk related family members, a molecular diagnosis may obviate the need for another renal biopsy
    • 

    corecore