534 research outputs found

    Fluctuation and flow probes of early-time correlations in relativistic heavy ion collisions

    Full text link
    Fluctuation and correlation observables are often measured using multi-particle correlation methods and therefore mutually probe the origins of genuine correlations present in multi-particle distribution functions. We investigate the common influence of correlations arising from the spatially inhomogeneous initial state on multiplicity and momentum fluctuations as well as flow fluctuations. Although these observables reflect different aspects of the initial state, taken together, they can constrain a correlation scale set at the earliest moments of the collision. We calculate both the correlation scale in an initial stage Glasma flux tube picture and the modification to these correlations from later stage hydrodynamic flow and find quantitative agreement with experimental measurements over a range of collision systems and energies.Comment: Proceedings of the 28th Winter Workshop on Nuclear Dynamics, Dorado del Mar, Puerto Rico, April 7-14, 201

    Applicability of Monte Carlo Glauber models to relativistic heavy ion collision data

    Full text link
    The accuracy of Monte Carlo Glauber model descriptions of minimum-bias multiplicity frequency distributions is evaluated using data from the Relativistic Heavy Ion Collider (RHIC) within the context of a sensitive, power-law representation introduced previously by Trainor and Prindle (TP). Uncertainties in the Glauber model input and in the mid-rapidity multiplicity frequency distribution data are reviewed and estimated using the TP centrality methodology. The resulting errors in model-dependent geometrical quantities used to characterize heavy ion collisions ({\em i.e.} impact parameter, number of nucleon participants NpartN_{part}, number of binary interactions NbinN_{bin}, and average number of binary collisions per incident participant nucleon ν\nu) are presented for minimum-bias Au-Au collisions at sNN\sqrt{s_{NN}} = 20, 62, 130 and 200 GeV and Cu-Cu collisions at sNN\sqrt{s_{NN}} = 62 and 200 GeV. Considerable improvement in the accuracy of collision geometry quantities is obtained compared to previous Monte Carlo Glauber model studies, confirming the TP conclusions. The present analysis provides a comprehensive list of the sources of uncertainty and the resulting errors in the above geometrical collision quantities as functions of centrality. The capability of energy deposition data from trigger detectors to enable further improvements in the accuracy of collision geometry quantities is also discussed.Comment: 27 pages, 4 figures, 11 table

    Understanding jet quenching and medium response with di-hadron correlation

    Full text link
    A brief review of the pTp_T dependence of the dihadron correlations from RHIC is presented. We attempt to construct a consistent picture that can describe the data as a whole, focusing on the following important aspects, 1) the relation between jet fragmentation of survived jet and medium response to quenched jets, 2) the possible origin of the medium response and its relation to intermediate pTp_T physics for single hadron production, 3) the connection between the near-side ridge and away-side cone, 4) and their relations to low energy results.Comment: 8 pages, 8 figures, presented at the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, "Quark Matter 2008", Jaipur, India, February 4-10, 2008. Updated with the published versio

    Quantifying Properties of the QCD Matter at RHIC

    Full text link
    We will review recent results on quantitative description of global properties of bulk partonic matter at RHIC. These results include strangeness phase space factor of the partonic matter, azimuthal angular anisotropy v2v_2, and transverse momentum pTp_T distributions of effective partons at the hadronization of bulk partonic matter. We present empirical constraints on parton energy loss in the high pTp_T region (>> 5 GeV/c). A flat RAAR_{AA} as a function of pTp_T at mid-rapidity implies a constant fraction of the parton energy loss (ΔpT/pT\Delta p_T/p_T) and the fraction reaches 25% for neutral π\pi, charged hadrons and non-photonic electrons of heavy quark decays from central Au+Au collisions at sNN\sqrt{s_{NN}} 200 GeV. Collision centrality dependence of ΔpT/pT\Delta p_T/p_T from Au+Au and Cu+Cu collisions indicates that the fraction is approximately proportional to particle rapidity density dn/dydn/dy divided by the initial transverse overlapping area of the colliding nuclei. Implications on dynamics of parton energy loss will be discussed.Comment: To Appear in SQM2008 Conference Proceeding

    Novel Bose-Einstein Interference in the Passage of a Fast Particle in a Dense Medium

    Full text link
    When an energetic particle collides coherently with many medium particles at high energies, the Bose-Einstein symmetry with respect to the interchange of the exchanged virtual bosons leads to a destructive interference of the Feynman amplitudes in most regions of the phase space but a constructive interference in some other regions of the phase space. As a consequence, the recoiling medium particles have a tendency to come out collectively along the direction of the incident fast particle, each carrying a substantial fraction of the incident longitudinal momentum. Such an interference appearing as collective recoils of scatterers along the incident particle direction may have been observed in angular correlations of hadrons associated with a high-pTp_T trigger in high-energy AuAu collisions at RHIC.Comment: 10 pages, 2 figures, invited talk presented at the 35th Symposium on Nuclear Physics, Cocoyoc, Mexico, January 3, 2012, to be published in IOP Conference Serie
    • …
    corecore