132 research outputs found

    Construction of a non-standard quantum field theory through a generalized Heisenberg algebra

    Get PDF
    We construct a Heisenberg-like algebra for the one dimensional quantum free Klein-Gordon equation defined on the interval of the real line of length LL. Using the realization of the ladder operators of this type Heisenberg algebra in terms of physical operators we build a 3+1 dimensional free quantum field theory based on this algebra. We introduce fields written in terms of the ladder operators of this type Heisenberg algebra and a free quantum Hamiltonian in terms of these fields. The mass spectrum of the physical excitations of this quantum field theory are given by n2π2/L2+mq2\sqrt{n^2 \pi^2/L^2+m_q^2}, where n=1,2,...n= 1,2,... denotes the level of the particle with mass mqm_q in an infinite square-well potential of width LL.Comment: Latex, 16 page

    Some boundary effects in quantum field theory

    Full text link
    We have constructed a quantum field theory in a finite box, with periodic boundary conditions, using the hypothesis that particles living in a finite box are created and/or annihilated by the creation and/or annihilation operators, respectively, of a quantum harmonic oscillator on a circle. An expression for the effective coupling constant is obtained showing explicitly its dependence on the dimension of the box.Comment: 12 pages, Late

    Generalized quantum field theory: perturbative computation and perspectives

    Get PDF
    We analyze some consequences of two possible interpretations of the action of the ladder operators emerging from generalized Heisenberg algebras in the framework of the second quantized formalism. Within the first interpretation we construct a quantum field theory that creates at any space-time point particles described by a q-deformed Heisenberg algebra and we compute the propagator and a specific first order scattering process. Concerning the second one, we draw attention to the possibility of constructing this theory where each state of a generalized Heisenberg algebra is interpreted as a particle with different mass.Comment: 19 page

    Construction of coherent states for physical algebraic systems

    Full text link
    We construct a general state which is an eigenvector of the annihilation operator of the Generalized Heisenberg Algebra. We show for several systems, which are characterized by different energy spectra, that this general state satisfies the minimal set of conditions required to obtain Klauder's minimal coherent states.Comment: 15 pages, 3 figure
    corecore