4,329 research outputs found

    The impact of polarized extragalactic radio sources on the detection of CMB anisotropies in polarization

    Get PDF
    Recent polarimetric surveys of extragalactic radio sources (ERS) at frequencies \nu>1GHz are reviewed. By exploiting all the most relevant data on the polarized emission of ERS we study the frequency dependence of polarization properties of ERS between 1.4 and 86GHz. For flat-spectrum sources the median (mean) fractional polarization increases from 1.5% (2-2.5%) at 1.4GHz to 2.5-3% (3-3.5%) at \nu>10GHz. Steep-spectrum sources are typically more polarized, especially at high frequencies where Faraday depolarization is less relevant. As a general result, we do not find that the fractional polarization of ERS depends on the total flux density at high radio frequencies, i.e >20GHz. Moreover, in this frequency range, current data suggest a moderate increase of the fractional polarization of ERS with frequency. A formalism to estimate ERS number counts in polarization and the contribution of unresolved polarized ERS to angular power spectra at Cosmic Microwave Background (CMB) frequencies is also developed and discussed. As a first application, we present original predictions for the Planck satellite mission. Our current results show that only a dozen polarized ERS will be detected by the Planck Low Frequency Instrument (LFI), and a few tens by the High Frequency Instrument (HFI). As for CMB power spectra, ERS should not be a strong contaminant to the CMB E-mode polarization at frequencies \nu>70GHz. On the contrary, they can become a relevant constraint for the detection of the cosmological B--mode polarization if the tensor-to-scalar ratio is <0.01.Comment: 14 pages, 7 figures. Accepted for publication in Advances in Astronomy, Special Issue: "Astrophysical Foregrounds in Microwave Surveys", editor-in-chief C. Burigana, (www.hindawi.com

    Phase growth in bistable systems with impurities

    Full text link
    A system of coupled chaotic bistable maps on a lattice with randomly distributed impurities is investigated as a model for studying the phenomenon of phase growth in nonuniform media. The statistical properties of the system are characterized by means of the average size of spatial domains of equivalent spin variables that define the phases. It is found that the rate at which phase domains grow becomes smaller when impurities are present and that the average size of the resulting domains in the inhomogeneous state of the system decreases when the density of impurities is increased. The phase diagram showing regions where homogeneous, heterogeneous, and chessboard patterns occur on the space of parameters of the system is obtained. A critical boundary that separates the regime of slow growth of domains from the regime of fast growth in the heterogeneous region of the phase diagram is calculated. The transition between these two growth regimes is explained in terms of the stability properties of the local phase configurations. Our results show that the inclusion of spatial inhomogeneities can be used as a control mechanism for the size and growth velocity of phase domains forming in spatiotemporal systems.Comment: 7 pages, 12 figure

    Cross-correlation of the CMB and radio galaxies in real, harmonic and wavelet spaces: detection of the integrated Sachs-Wolfe effect and dark energy constraints

    Full text link
    We report the first detection of the ISW effect in wavelet space, at scales in the sky around 7 degrees with a significance of around 3.3 sigma, by cross-correlating the WMAP first-year data and the NRAO VLA Sky Survey (NVSS). In addition, we present a detailed comparison among the capabilities of three different techniques for two different objectives: to detect the ISW and to put constraints in the nature of the dark energy. The three studied techniques are: the cross-angular power spectrum (CAPS, harmonic space), the correlation function (CCF, real space) and the covariance of the Spherical Mexican Hat Wavelet (SMHW) coefficients (CSMHW, wavelet space). We prove that the CSMHW is expected to provide a higher detection of the ISW effect for a certain scale. This prediction has been corroborated by the analysis of the data. The SMHW analysis shows that the cross-correlation signal is caused neither by systematic effects nor foreground contamination. However, by taking into account the information encoded in all the multipoles/scales/angles, the CAPS provides slightly better constraints than the SMHW in the cosmological parameters that define the nature of the dark energy. The limits provided by the CCF are wider than for the other two methods. Two different cases have been studied: 1) a flat Lambda-CDM universe and 2) a flat universe with an equation of state parameter different from -1. In the first case, the CAPS provides (for a bias value of b = 1.6) 0.59 < Lambda density < 0.84 (at 1 sigma CL). Moreover, the CAPS rejects the range Lambda density < 0.1 at 3.5 sigma, which is the highest detection of the dark energy reported up to date. In the second case, the CAPS gives 0.50 < dark energy density < 0.82 and -1.16 < w < 0.43 (at 1 sigma CL).Comment: 12 pages, 7 figures, accepted for publication in MNRAS. Analysis redone. Changes in the estimation of the cosmological parametres. Additional comparison between wavelets and more standard technique

    Phase ordering induced by defects in chaotic bistable media

    Full text link
    The phase ordering dynamics of coupled chaotic bistable maps on lattices with defects is investigated. The statistical properties of the system are characterized by means of the average normalized size of spatial domains of equivalent spin variables that define the phases. It is found that spatial defects can induce the formation of domains in bistable spatiotemporal systems. The minimum distance between defects acts as parameter for a transition from a homogeneous state to a heterogeneous regime where two phases coexist The critical exponent of this transition also exhibits a transition when the coupling is increased, indicating the presence of a new class of domain where both phases coexist forming a chessboard pattern.Comment: 3 pages, 3 figures, Accepted in European Physics Journa

    Entanglement of 2xK quantum systems

    Full text link
    We derive an analytical expression for the lower bound of the concurrence of mixed quantum states of composite 2xK systems. In contrast to other, implicitly defined entanglement measures, the numerical evaluation of our bound is straightforward. We explicitly evaluate its tightness for general mixed states of 2x3 systems, and identify a large class of states where our expression gives the exact value of the concurrence.Comment: 7 pages, 1 figure, to be published in Europhysics Lette

    Expected optimal feedback with Time-Varying Parameters

    Get PDF
    In this paper we derive the closed loop form of the Expected Optimal Feedback rule, sometimes called passive learning stochastic control, with time varying parameters. As such this paper extends the work of Kendrick (1981,2002, Chapter 6) where parameters are assumed to vary randomly around a known constant mean. Furthermore, we show that the cautionary myopic rule in Beck and Wieland (2002) model, a test bed for comparing various stochastic optimizations approaches, can be cast into this framework and can be treated as a special case of this solution.Optimal experimentation, stochastic optimization, time-varying parameters, expected optimal feedback

    Expected optimal feedback with Time-Varying Parameters

    Get PDF
    In this paper we derive, by using dynamic programming, the closed loop form of the Expected Optimal Feedback rule with time varying parameter. As such this paper extends the work of Kendrick (1981, 2002, Chapter 6) for the time varying parameter case. Furthermore, we show that the Beck and Wieland (2002) model can be cast into this framework and can be treated as a special case of this solution.

    Mesoscopic Model for Diffusion-Influenced Reaction Dynamics

    Full text link
    A hybrid mesoscopic multi-particle collision model is used to study diffusion-influenced reaction kinetics. The mesoscopic particle dynamics conserves mass, momentum and energy so that hydrodynamic effects are fully taken into account. Reactive and non-reactive interactions with catalytic solute particles are described by full molecular dynamics. Results are presented for large-scale, three-dimensional simulations to study the influence of diffusion on the rate constants of the A+CB+C reaction. In the limit of a dilute solution of catalytic C particles, the simulation results are compared with diffusion equation approaches for both the irreversible and reversible reaction cases. Simulation results for systems where the volume fraction of catalytic spheres is high are also presented, and collective interactions among reactions on catalytic spheres that introduce volume fraction dependence in the rate constants are studied.Comment: 9 pages, 5 figure
    corecore