5,852 research outputs found

    The signature of dissipation in the mass-size relation: are bulges simply spheroids wrapped in a disc?

    Full text link
    The relation between the stellar mass and size of a galaxy's structural subcomponents, such as discs and spheroids, is a powerful way to understand the processes involved in their formation. Using very large catalogues of photometric bulge+disc structural decompositions and stellar masses from the Sloan Digital Sky Survey Data Release Seven, we carefully define two large subsamples of spheroids in a quantitative manner such that both samples share similar characteristics with one important exception: the 'bulges' are embedded in a disc and the 'pure spheroids' are galaxies with a single structural component. Our bulge and pure spheroid subsample sizes are 76,012 and 171,243 respectively. Above a stellar mass of ~101010^{10} M⊙_{\odot}, the mass-size relations of both subsamples are parallel to one another and are close to lines of constant surface mass density. However, the relations are offset by a factor of 1.4, which may be explained by the dominance of dissipation in their formation processes. Whereas the size-mass relation of bulges in discs is consistent with gas-rich mergers, pure spheroids appear to have been formed via a combination of 'dry' and 'wet' mergers.Comment: Accepted for publication in MNRAS, 6 pages, 3 figure

    The infrared imaging spectrograph (IRIS) for TMT: sensitivities and simulations

    Get PDF
    We present sensitivity estimates for point and resolved astronomical sources for the current design of the InfraRed Imaging Spectrograph (IRIS) on the future Thirty Meter Telescope (TMT). IRIS, with TMT's adaptive optics system, will achieve unprecedented point source sensitivities in the near-infrared (0.84 - 2.45 {\mu}m) when compared to systems on current 8-10m ground based telescopes. The IRIS imager, in 5 hours of total integration, will be able to perform a few percent photometry on 26 - 29 magnitude (AB) point sources in the near-infrared broadband filters (Z, Y, J, H, K). The integral field spectrograph, with a range of scales and filters, will achieve good signal-to-noise on 22 - 26 magnitude (AB) point sources with a spectral resolution of R=4,000 in 5 hours of total integration time. We also present simulated 3D IRIS data of resolved high-redshift star forming galaxies (1 < z < 5), illustrating the extraordinary potential of this instrument to probe the dynamics, assembly, and chemical abundances of galaxies in the early universe. With its finest spatial scales, IRIS will be able to study luminous, massive, high-redshift star forming galaxies (star formation rates ~ 10 - 100 M yr-1) at ~100 pc resolution. Utilizing the coarsest spatial scales, IRIS will be able to observe fainter, less massive high-redshift galaxies, with integrated star formation rates less than 1 M yr-1, yielding a factor of 3 to 10 gain in sensitivity compared to current integral field spectrographs. The combination of both fine and coarse spatial scales with the diffraction-limit of the TMT will significantly advance our understanding of early galaxy formation processes and their subsequent evolution into presentday galaxies.Comment: SPIE Astronomical Instrumentation 201

    A Search for Nitrogen Enriched Quasars in the Sloan Digital Sky Survey Early Data Release

    Full text link
    A search for nitrogen-rich quasars in the Sloan Digital Sky Survey Early Data Release (SDSS EDR) catalog has yielded 16 candidates, including five with very prominent emission, but no cases with nitrogen emission as strong as in Q0353-383. The quasar Q0353-383 has long been known to have extremely strong nitrogen intercombination lines at lambda 1486 and lambda 1750 Angstroms, implying an anomalously high nitrogen abundance of about 15 times solar. It is still the only one of its kind known. A preliminary search through the EDR using the observed property of the weak C IV emission seen in Q0353-383 resulted in a sample of 23 objects with unusual emission or absorption-line properties, including one very luminous redshift 2.5 star-forming galaxy. We present descriptions, preliminary emission-line measurements, and spectra for all the objects discussed here.Comment: 20 pages, 5 figures, submitted to AJ; final refereed versio

    The Infrared Imaging Spectrograph (IRIS) for TMT: the atmospheric dispersion corrector

    Get PDF
    We present a conceptual design for the atmospheric dispersion corrector (ADC) for TMT's Infrared Imaging Spectrograph (IRIS). The severe requirements of this ADC are reviewed, as are limitations to observing caused by uncorrectable atmospheric effects. The requirement of residual dispersion less than 1 milliarcsecond can be met with certain glass combinations. The design decisions are discussed and the performance of the design ADC is described. Alternative options and their performance tradeoffs are also presented.Comment: SPIE Astronomical Instrumentation 201

    The Infrared Imaging Spectrograph (IRIS) for TMT: Volume phase holographic grating performance testing and discussion

    Get PDF
    Maximizing the grating efficiency is a key goal for the first light instrument IRIS (Infrared Imaging Spectrograph) currently being designed to sample the diffraction limit of the TMT (Thirty Meter Telescope). Volume Phase Holographic (VPH) gratings have been shown to offer extremely high efficiencies that approach 100% for high line frequencies (i.e., 600 to 6000l/mm), which has been applicable for astronomical optical spectrographs. However, VPH gratings have been less exploited in the near-infrared, particularly for gratings that have lower line frequencies. Given their potential to offer high throughputs and low scattered light, VPH gratings are being explored for IRIS as a potential dispersing element in the spectrograph. Our team has procured near-infrared gratings from two separate vendors. We have two gratings with the specifications needed for IRIS current design: 1.51-1.82{\mu}m (H-band) to produce a spectral resolution of 4000 and 1.19- 1.37 {\mu}m (J-band) to produce a spectral resolution of 8000. The center wavelengths for each grating are 1.629{\mu}m and 1.27{\mu}m, and the groove densities are 177l/mm and 440l/mm for H-band R=4000 and J-band R=8000, respectively. We directly measure the efficiencies in the lab and find that the peak efficiencies of these two types of gratings are quite good with a peak efficiency of ~88% at the Bragg angle in both TM and TE modes at H-band, and 90.23% in TM mode, 79.91% in TE mode at J-band for the best vendor. We determine the drop in efficiency off the Bragg angle, with a 20-23% decrease in efficiency at H-band when 2.5 degree deviation from the Bragg angle, and 25%-28% decrease at J-band when 5{\deg} deviation from the Bragg angle.Comment: Proceedings of the SPIE, 9147-33

    Tests of the Las Campanas Distant Cluster Survey from Confirmation Observations for the ESO Distant Cluster Survey

    Full text link
    The ESO Distant Cluster Survey (EDisCS) is a photometric and spectroscopic study of the galaxy cluster population at two epochs, z~0.5 and z~0.8, drawn from the Las Campanas Distant Cluster Survey (LCDCS). We report results from the initial candidate confirmation stage of the program and use these results to probe the properties of the LCDCS. Of the 30 candidates targeted, we find statistically significant overdensities of red galaxies near 28. Of the ten additional candidates serendipitously observed within the fields of the targeted 30, we detect red galaxy overdensities near six. We test the robustness of the published LCDCS estimated redshifts to misidentification of the brighest cluster galaxy (BCG) in the survey data, and measure the spatial alignment of the published cluster coordinates, the peak red galaxy overdensity, and the brightest cluster galaxy. We conclude that for LCDCS clusters out to z~0.8, 1) the LCDCS coordinates agree with the centroid of the red galaxy overdensity to within 25'' (~150 h^{-1} kpc) for 34 out of 37 candidates with 3\sigma galaxy overdensities, 2) BCGs are typically coincident with the centroid of the red galaxy population to within a projected separation of 200 h^{-1} kpc (32 out of 34 confirmed candidates), 3) the red galaxy population is strongly concentrated, and 4) the misidentification of the BCG in the LCDCS causes a redshift error >0.1 in 15-20% of the LCDCS candidates. These findings together help explain the success of the surface brightness fluctuations detection method.Comment: 10 pages, 9 figures, accepted for publication in the November 10 issue of Ap

    The InfraRed Imaging Spectrograph (IRIS) for TMT: Reflective ruled diffraction grating performance testing and discussion

    Get PDF
    We present the efficiency of near-infrared reflective ruled diffraction gratings designed for the InfraRed Imaging Spectrograph (IRIS). IRIS is a first light, integral field spectrograph and imager for the Thirty Meter Telescope (TMT) and narrow field infrared adaptive optics system (NFIRAOS). We present our experimental setup and analysis of the efficiency of selected reflective diffraction gratings. These measurements are used as a comparison sample against selected candidate Volume Phase Holographic (VPH) gratings (see Chen et al., this conference). We investigate the efficiencies of five ruled gratings designed for IRIS from two separate vendors. Three of the gratings accept a bandpass of 1.19-1.37 {\mu}m (J band) with ideal spectral resolutions of R=4000 and R=8000, groove densities of 249 and 516 lines/mm, and blaze angles of 9.86 and 20.54 degrees, respectively. The other two gratings accept a bandpass of 1.51-1.82 {\mu}m (H Band) with an ideal spectral resolution of R=4000, groove density of 141 lines/mm, and blaze angle of 9.86{\deg}. We measure the efficiencies off blaze angle for all gratings and the efficiencies between the polarization transverse magnetic (TM) and transverse electric (TE) states. The peak reflective efficiencies are 98.90 +/- 3.36% (TM) and 84.99 +/- 2.74% (TM) for the H-band R=4000 and J-band R=4000 respectively. The peak reflective efficiency for the J-band R=8000 grating is 78.78 +/- 2.54% (TE). We find that these ruled gratings do not exhibit a wide dependency on incident angle within +/-3{\deg}. Our best-manufactured gratings were found to exhibit a dependency on the polarization state of the incident beam with a ~10-20% deviation, consistent with the theoretical efficiency predictions.Comment: Proceedings of the SPIE, 9147-34
    • …
    corecore