442 research outputs found
Two-dimensional macroscopic quantum dynamics in YBCO Josephson junctions
We theoretically study classical thermal activation (TA) and macroscopic
quantum tunneling (MQT) for a YBCO Josephson junction coupled with an LC
circuit. The TA and MQT escape rate are calculated by taking into account the
two-dimensional nature of the classical and quantum phase dynamics. We find
that the MQT escape rate is largely suppressed by the coupling to the LC
circuit. On the other hand, this coupling leads to the slight reduction of the
TA escape rate. These results are relevant for the interpretation of a recent
experiment on the MQT and TA phenomena in YBCO bi-epitaxial Josephson
junctions.Comment: 9 pages, 2 figure
Quantum effects in a superconducting glass model
We study disordered Josephson junctions arrays with long-range interaction
and charging effects. The model consists of two orthogonal sets of positionally
disordered parallel filaments (or wires) Josephson coupled at each crossing
and in the presence of a homogeneous and transverse magnetic field. The large
charging energy (resulting from small self-capacitance of the ultrathin wires)
introduces important quantum fluctuations of the superconducting phase within
each filament. Positional disorder and magnetic field frustration induce
spin-glass like ground state, characterized by not having long-range order of
the phases. The stability of this phase is destroyed for sufficiently large
charging energy. We have evaluated the temperature vs charging energy phase
diagram by extending the methods developed in the theory of infinite-range spin
glasses, in the limit of large magnetic field. The phase diagram in the
different temperature regimes is evaluated by using variety of methods, to wit:
semiclassical WKB and variational methods, Rayleigh-Schr\"{o}dinger
perturbation theory and pseudospin effective Hamiltonians. Possible
experimental consequences of these results are briefly discussed.Comment: 17 pages REVTEX. Two Postscript figures can be obtained from the
authors. To appear in PR
Landau theory of bi-criticality in a random quantum rotor system
We consider here a generalization of the random quantum rotor model in which
each rotor is characterized by an M-component vector spin. We focus entirely on
the case not considered previously, namely when the distribution of exchange
interactions has non-zero mean. Inclusion of non-zero mean permits
ferromagnetic and superconducting phases for M=1 and M=2, respectively. We find
that quite generally, the Landau theory for this system can be recast as a
zero-mean problem in the presence of a magnetic field. Naturally then, we find
that a Gabay-Toulouse line exists for when the distribution of exchange
interactions has non-zero mean. The solution to the saddle point equations is
presented in the vicinity of the bi-critical point characterized by the
intersection of the ferromagnetic (M=1) or superconducting (M=2) phase with the
paramagnetic and spin glass phases. All transitions are observed to be second
order. At zero temperature, we find that the ferromagnetic order parameter is
non-analytic in the parameter that controls the paramagnet/ferromagnet
transition in the absence of disorder. Also for M=1, we find that replica
symmetry breaking is present but vanishes at low temperatures. In addition, at
finite temperature, we find that the qualitative features of the phase diagram,
for M=1, are {\it identical} to what is observed experimentally in the random
magnetic alloy .Comment: 20 pages, 5 figure
Resistance in Superconductors
In this pedagogical review, we discuss how electrical resistance can arise in
superconductors. Starting with the idea of the superconducting order parameter
as a condensate wave function, we introduce vortices as topological excitations
with quantized phase winding, and we show how phase slips occur when vortices
cross the sample. Superconductors exhibit non-zero electrical resistance under
circumstances where phase slips occur at a finite rate. For one-dimensional
superconductors or Josephson junctions, phase slips can occur at isolated
points in space-time. Phase slip rates may be controlled by thermal activation
over a free-energy barrier, or in some circumstances, at low temperatures, by
quantum tunneling through a barrier. We present an overview of several
phenomena involving vortices that have direct implications for the electrical
resistance of superconductors, including the Berezinskii-Kosterlitz-Thouless
transition for vortex-proliferation in thin films, and the effects of vortex
pinning in bulk type II superconductors on the non-linear resistivity of these
materials in an applied magnetic field. We discuss how quantum fluctuations can
cause phase slips and review the non-trivial role of dissipation on such
fluctuations. We present a basic picture of the superconductor-to-insulator
quantum phase transitions in films, wires, and Josephson junctions. We point
out related problems in superfluid helium films and systems of ultra-cold
trapped atoms. While our emphasis is on theoretical concepts, we also briefly
describe experimental results, and we underline some of the open questions.Comment: Chapter to appear in "Bardeen, Cooper and Schrieffer: 50 Years,"
edited by Leon N. Cooper and Dmitri Feldman, to be published by World
Scientific Pres
Inertial Mass of a Vortex in Cuprate Superconductors
We present here a calculation of the inertial mass of a moving vortex in
cuprate superconductors. This is a poorly known basic quantity of obvious
interest in vortex dynamics. The motion of a vortex causes a dipolar density
distortion and an associated electric field which is screened. The energy cost
of the density distortion as well as the related screened electric field
contribute to the vortex mass, which is small because of efficient screening.
As a preliminary, we present a discussion and calculation of the vortex mass
using a microscopically derivable phase-only action functional for the far
region which shows that the contribution from the far region is negligible, and
that most of it arises from the (small) core region of the vortex. A
calculation based on a phenomenological Ginzburg-Landau functional is performed
in the core region. Unfortunately such a calculation is unreliable, the reasons
for it are discussed. A credible calculation of the vortex mass thus requires a
fully microscopic, non-coarse grained theory. This is developed, and results
are presented for a s-wave BCS like gap, with parameters appropriate to the
cuprates. The mass, about 0.5 per layer, for magnetic field along the
axis, arises from deformation of quasiparticle states bound in the core, and
screening effects mentioned above. We discuss earlier results, possible
extensions to d-wave symmetry, and observability of effects dependent on the
inertial mass.Comment: 27 pages, Latex, 3 figures available on request, to appear in
Physical Review
The mechanism of hole carrier generation and the nature of pseudogap- and 60K-phases in YBCO
In the framework of the model assuming the formation of NUC on the pairs of
Cu ions in CuO plane the mechanism of hole carrier generation is
considered and the interpretation of pseudogap and 60 K-phases in
. is offered. The calculated dependences of hole
concentration in on doping and temperature
are found to be in a perfect quantitative agreement with experimental data. As
follows from the model the pseudogap has superconducting nature and arises at
temperature in small clusters uniting a number of
NUC's due to large fluctuations of NUC occupation. Here and
are the superconducting transition temperatures of infinite and finite
clusters of NUC's, correspondingly. The calculated and
dependences are in accordance with experiment. The area between
and corresponds to the area of fluctuations
where small clusters fluctuate between superconducting and normal states owing
to fluctuations of NUC occupation. The results may serve as important arguments
in favor of the proposed model of HTSC.Comment: 12 pages, 7 figure
Three-dimensional Josephson-junction arrays in the quantum regime
We study the quantum phase transition properties of a three-dimensional
periodic array of Josephson junctions with charging energy that includes both
the self and mutual junction capacitances. We use the phase fluctuation algebra
between number and phase operators, given by the Euclidean group E_2, and we
effectively map the problem onto a solvable quantum generalization of the
spherical model. We obtain a phase diagram as a function of temperature,
Josephson coupling and charging energy. We also analyze the corresponding
fluctuation conductivity and its universal scaling form in the vicinity of the
zero-temperature quantum critical point.Comment: 9 pages, LATEX, three PostScript figures. Submitted to Phys. Rev.
Let
Bose-Einstein Condensation on inhomogeneous complex networks
The thermodynamic properties of non interacting bosons on a complex network
can be strongly affected by topological inhomogeneities. The latter give rise
to anomalies in the density of states that can induce Bose-Einstein
condensation in low dimensional systems also in absence of external confining
potentials. The anomalies consist in energy regions composed of an infinite
number of states with vanishing weight in the thermodynamic limit. We present a
rigorous result providing the general conditions for the occurrence of
Bose-Einstein condensation on complex networks in presence of anomalous
spectral regions in the density of states. We present results on spectral
properties for a wide class of graphs where the theorem applies. We study in
detail an explicit geometrical realization, the comb lattice, which embodies
all the relevant features of this effect and which can be experimentally
implemented as an array of Josephson Junctions.Comment: 11 pages, 9 figure
Electrical transport studies of quench condensed Bi films at the initial stage of film growth: Structural transition and the possible formation of electron droplets
The electrical transport properties of amorphous Bi films prepared by
sequential quench deposition have been studied in situ. A
superconductor-insulator (S-I) transition was observed as the film was made
increasingly thicker, consistent with previous studies. Unexpected behavior was
found at the initial stage of film growth, a regime not explored in detail
prior to the present work. As the temperature was lowered, a positive
temperature coefficient of resistance (dR/dT > 0) emerged, with the resistance
reaching a minimum before the dR/dT became negative again. This behavior was
accompanied by a non-linear and asymmetric I-V characteristic. As the film
became thicker, conventional variable-range hopping (VRH) was recovered. We
attribute the observed crossover in the electrical transport properties to an
amorphous to granular structural transition. The positive dR/dT found in the
amorphous phase of Bi formed at the initial stage of film growth was
qualitatively explained by the formation of metallic droplets within the
electron glass.Comment: 7 pages, 6 figure
Quantum critical point and scaling in a layered array of ultrasmall Josephson junctions
We have studied a quantum Hamiltonian that models an array of ultrasmall
Josephson junctions with short range Josephson couplings, , and charging
energies, , due to the small capacitance of the junctions. We derive a new
effective quantum spherical model for the array Hamiltonian. As an application
we start by approximating the capacitance matrix by its self-capacitive limit
and in the presence of an external uniform background of charges, . In
this limit we obtain the zero-temperature superconductor-insulator phase
diagram, , that improves upon previous theoretical
results that used a mean field theory approximation. Next we obtain a
closed-form expression for the conductivity of a square array, and derive a
universal scaling relation valid about the zero--temperature quantum critical
point. In the latter regime the energy scale is determined by temperature and
we establish universal scaling forms for the frequency dependence of the
conductivity.Comment: 18 pages, four Postscript figures, REVTEX style, Physical Review B
1999. We have added one important reference to this version of the pape
- …
