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Abstract

We present here a calculation of the inertial mass of a moving vortex in

cuprate superconductors. This is a poorly known basic quantity of obvious

interest in vortex dynamics. The motion of a vortex causes a dipolar den-

sity distortion and an associated electric field which is screened. The energy

cost of the density distortion as well as the related screened electric field con-

tribute to the vortex mass, which is small because of efficient screening. As

a preliminary, we present a discussion and calculation of the vortex mass us-

ing a microscopically derivable phase-only action functional for the far region

which shows that the contribution from the far region is negligible, and that

most of it arises from the (small) core region of the vortex. A calculation

based on a phenomenological Ginzburg-Landau functional is performed in

the core region. Unfortunately such a calculation is unreliable, the reasons

for it are discussed. A credible calculation of the vortex mass thus requires

a fully microscopic, non-coarse grained theory. This is developed, and re-

sults are presented for a s-wave BCS like gap, with parameters appropriate

to the cuprates. The mass, about 0.5 me per layer, for magnetic field along

the c axis, arises from deformation of quasiparticle states bound in the core,

and screening effects mentioned above. We discuss earlier results, possible

extensions to d-wave symmetry, and observability of effects dependent on the

inertial mass.
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1. Introduction

The discovery of high temperature superconductors has led to a renewed interest in the
mixed phase. Several novel phenomena arising from their short coherence length, layered
nature and large superconducting transition temperatures have been theoretically and ex-
perimentally studied(1). One area of interest is the existence of effects connected with vortex
dynamics, e.g. quantum creep (2,3), anomalies in the Hall effect (4-6), and ac electromag-
netic response (7,8). These phenomena are not fully understood, partly because of the lack
of a well developed first principles theory of vortex dynamics, especially in the quantum,
interacting vortex regime. A number of recent contributions address parts of the problem
(9-12), especially the Magnus force driven dynamics in the presence of dissipation.

A necessary ingredient in all considerations of the motion of a vortex is its inertial mass.
This quantity, generally believed to be small, is surprisingly ill known and its origin is not
well understood. (See Ref. 1, for example). Not much attention has been paid to this
question because, for some phenomena, the dynamics is governed by the large dissipation
(13) or the strong Magnus force (9-12) and the inertial mass could be irrelevant. However,
there is experimental evidence for a low dissipation regime in cuprate superconductors (5),
and for a Magnus force smaller (14) than standard estimates (9-12). It is thus quite possible
that the inertial mass could affect dynamical processes involving vortices. (These questions
are taken up in Section IV). Also, in the absence of an understanding of what contributes
to the vortex mass, and how much, it is difficult to meaningfully discuss the question of
whether or how such a mass influences vortex dynamics. We therefore present here an
extensive discussion and a calculation of the vortex mass, and go into the question of mass
related phenomena in Section IV. This work was first reported in 1994(15).

We first estimate the mass using a phase-only functional (Section II) which is known to
give a good description of the system far from the vortex core, where the amplitude of the
order parameter is nearly constant and the only relevant degree of freedom is the phase.
Recently, Duan and Leggett (17) and Duan (18) have given a careful discussion of this
approach where the time dependent order parameter (phase) of a moving vortex causes the
electronic density to fluctuate. This in turn gives rise to an electric field which is screened.
The energy of the density distortion and electric field energy are the cause of the mass. The
phase-only functional used has been derived microscopically (19) and the result obtained
thus has a microscopic significance and gives an accurate estimate of the contribution to the
vortex mass which accrues from transitions induced in the electronic scattering states of a
vortex by the vortex motion. The contribution of this process from the far region turns out
to be very small due to the efficient screening; thus most of the mass comes from the core
of the vortex.

We then calculate the core contribution to the mass using a phenomenological Ginzburg-
Landau functional as has been conventional since the early work of Suhl (16). This functional
is not derivable microscopically and is used mainly as an interpolating formula which reduces
to the correct phase-only functional in the far region. However, obviously the coarse grained
GL approach is unrealistic for effects within the core which is of the same size (ξ) as the
coarse graining scale of the theory. Further the screening length in GL theory is proportional
to |ψ|−1, where ψ is the superconducting order parameter, and thus diverges at the core.
This is clearly an artefact of the GL approach, as the efficiency of Coulomb screening is
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related to the electronic compressibility, and is expected to be largely independent of the
superconducting order parameter. The GL estimate of the vortex mass is clearly unreliable
and is presented here mainly to contrast the correct microscopic calculation of the mass
which forms the main body of this paper. The correct, microscopically obtained vortex
mass, is very different from the GL estimate in its dependence on the basic parameters
of a superconductor. Inspite of this, the numerical value of the mass obtained in the GL
approach is (largely by accident) in the same range as that obtained from the microscopic
theory for parameters appropriate to the cuprates.

We then present the first correct microscopic calculation of the vortex mass (Section
III). We employ the self consistent pair field approximation which has been used extensively
for static vortex structure, quasiparticle energy levels, etc. (20-23). We make a Galilean
transformation to a frame of reference where the vortex is at rest. In this frame, the motion
of the vortex acts like a perturbation of the form ~u.~pop where ~u is the vortex velocity and ~pop

is the momentum operator for the electrons. The inertial mass is obtained by integrating out
the electronic degrees of freedom to second order in ~u. The coefficient of the (u2/2) term in
the effective action is the effective mass of the vortex. The mass is found to originate from a
polarization process involving the virtual excitation of the lowest energy quasiparticles in the
bound electronic states (quasiparticle states) localized in the core of the vortex. The small
core size (ξ ∼ 15Å) in the cuprate superconductors implies that the lowest unoccupied state
is separated by a sizeable gap (∼ 100K) from the highest occupied state below the Fermi
level (23), in strong contrast to conventional superconductors. The existence of this large gap
in the core quasiparticle spectrum has been recently observed (43) by STM measurements
in the vortex core region in Y Ba2Cu3O7−δ. This virtual transition process gives rise to a
large vortex mass (m∗ ≈ 25me). However, strong dielectric screening drastically reduces the
mass and leads to a value m∗ ≃ 0.5me per CuO2 layer. We discuss the physical reason for
a mass of this size in terms of the basic length scales and the screening process.

In the final section (Section IV) we discuss the calculation critically, compare with other
results, consider the calculation of a vortex mass for a non s-wave superconductor and go
into the question of when effects due to the small vortex mass might be observable.

II. Ginzburg Landau calculation of the vortex effective mass

The most natural way of discussing the motion of a singularity in the phase θ of the
superconducting order parameter is the time dependent Ginzburg Landau theory (17 - 19)
where the free energy (or action) is expressed as a functional of the phase of the supercon-
ducting order parameter. This functional provides a good description of the region far from
the centre of the vortex where the amplitude of the superconducting gap is nearly constant.
We describe the functional and briefly summarize known results for the mass contribution
from the region outside the core (17,18).

Outside the core, a phase only Hamiltonian is sufficient, and the action functional S per
length L (at T = 0) is given by

(S/L) = Sθ + Sem (1a)

where

Sθ =
∫ +∞

−∞
dt
∫

d~r





α1

2

(

θ̇ − 2eA0

h̄

)2

− α2

2



(∇θ − 2e ~A

h̄c
)2 +

4mθ̇

h̄







 (1b)
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and

Sem =
∫ +∞

−∞
dt
∫

d~r





(∇A0)
2 − (∇× ~A)2

8π



 (1c)

where ~r is the coordinate in the plane perpendicular to the magnetic field. In Eq. (1b), the
first two terms are the energies associated with pair charge and pair current (or velocity)
fluctuations respectively. The term linear in θ̇ is a total time derivative which has no physical
consequences in the absence of vortices. Its physical origin can be understood (10) in terms
of the Berry phase associated with the adiabatic motion of a vortex and it gives rise to the
Magnus force. Notice the absence of any term linear in A0 which is constrained to be zero
because of charge neutrality in the electron-ion system.

The action functional of Eq. (1a) can be obtained microscopically by starting with
electrons interacting with a pair potential (whose magnitude is nearly constant in the far
region), going to a gauge where the order parameter is real and then integrating out the
fermions. The details of the derivation have been outlined in (19). In Fig. (1), we show the
Feynman diagrams which contribute to the action of Eq. (1a) at T = 0 in the clean limit.
The coefficients α1 and α2 are the appropriate polarizabilities. For a weakly interacting,
clean Fermi gas, they have the values

α1 =

(

h̄

2e

)2
λ∗−2

TF

4π
(2a)

and

α2 =

(

h̄c

2e

)2
λ−2

L

4π
(2b)

where λ∗TF (the Thomas Fermi screening length) is given by λ∗−2
TF = (6πne2/ǫF ) and λL (the

London penetration depth) is given by λ−2
L = (4πne2)/(mec

2). A0 and ~A are the scalar
and vector electromagnetic potentials respectively, the two terms in Eq. (1c) being just the

field energies. In case there is an external magnetic field ~H0, the term
{

(∇× ~A)2/8π
}

is

modified to {(∇× ~A− ~H0)
2/8π}. The functional is clearly gauge invariant. In Eq. (1) the

displacement current term (1
c

∂ ~A
∂t

)2 has been omitted because of the largeness of c.
The motion of the vortex in a charged superconductor gives rise to an electric field (or

potential A0). To find this A0, we minimize S with respect to A0 which yields

∇2A0

4π
=

−2e

h̄
α1

(

θ̇ − 2eA0

h̄

)

(3)

Now for a vortex moving with a (small) uniform velocity ~u, we make the assumption that

θ(~r, t) = θ0(~r − ~ut) (4)

where θ0(~r) is the phase around a static vortex at the origin. Thus we have

θ̇(~r, t) = −~u.~∇θ0 (5)

Using this in combination with the known θ0, one finds the potential A0 from Eq. (3) and
the extra energy from Eq. (1). The result is

EKE =
πα1u

2

4
ln(1 +

ξ−2 −R−2
c

λ∗−2
TF +R−2

c

) (6a)
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where Rc is a long distance cutoff (whose magnitude will be taken to infinity in the end).
Then it is easy to see that in the limit e → 0 which implies λ∗TF → ∞, the expression for
EKE reduces to πα1u2

2
ln(Rc

ξ
) which diverges logarithmically as the long-distance cutoff Rc is

taken to ∞. This is the expected result for a neutral superfluid (17, 18). For the present
case of a charged superconductor we are always in the limit λ∗TF ≪ ξ and the expression for
the kinetic energy simplifies to

EKE ≃ πα1u
2

4

λ∗2TF

ξ2
=

u2

16ξ2

(

h̄

2e

)2

(6b)

The expression in Eq. (6b) can be rewritten as

EKE = ESV

(

u2

v2
F

)(

λ∗2TF

ξ2

)(

3

4ln(λL/ξ)

)

(6c)

where ESV = ( φ0

4πλL

)2 ln(λL

ξ
) is the London energy (per unit length) of a static vortex which

results from the terms involving transverse fluctuations in the current and magnetic field in
the phase functional of Eq. (1). The result is then easily understood on physical grounds;
the velocity u is to be compared with the natural velocity scale vF of the Fermi system.
The second bracketed factor in Eq. (6c) is due to the reduction of charge fluctuations by
screening. The former occur on a length scale ξ, while the screening length is λ∗TF ≪ ξ. On
substituting appropriate numbers in Eq. (6b), i.e. ξ ≃ 15Å and λ∗TF ≃ 1Å we find that
the contribution of this source to m∗

f ≃ 7 × 10−4me per layer, (me being the electron mass)

assuming an interlayer spacing d ≃ 10Å. This is an extremely small number; one reason for
its smallness is the screening factor (λ∗TF/ξ)

2 ≃ (1/200). The result, (Eq. (6b)), has been
obtained earlier by Duan (18), where details may be found.

The functional Sθ of Eq. (1) is not Galilean invariant and there are additional terms
involving higher order derivatives of θ, whose inclusion is necessary to restore this sym-
metry. These arise from the fact that the Gaililean invariant combination involving the
time dependent order parameter phase θ is the local electrochemical potential δµ(~r, t) =

− h̄
2
θ̇ + eA0 − ( h̄∇θ

2
− e ~A

c
)2

2m
The correct functional was recently obtained by Aitchison and co-

workers (24) and is of the form

Sθ =
∫ +∞

−∞
dt
∫

d~r





α1

2
[(θ̇ − 2eA0

h̄
) +

h̄(∇θ − 2e ~A
h̄c

)2

4m
]2 − α2

2
[
4m

h̄
θ̇ + (∇θ − 2e ~A

h̄c
)2]



 (7a)

The additional diagrams contributing here, are shown in Fig. (2). The harmonic electric
field terms in Eqs. (7a) and (1c) can be integrated out to give the action functional

Sθ =
∫

dt
∫

d~q

(2π)2

2α1

h̄2 | δµ(~q)|2 q2

q2 + λ−2
TF

− α2

2

∫

dt
∫

d~r[
4m

h̄
θ̇ + (∇θ − 2e ~A

h̄c
)2] (7b)

It is clear from Eq. (7b), that additional contributions accruing to the vortex mass come from
the coupling of charge fluctuations to the supercurrent fluctuations leading to non-adiabatic
corrections in the supercurrent distribution that are proportional to the vortex velocity.
However, an explicit calculation shows that all such contributions to the vortex mass are
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screened at least doubly more efficiently and are therefore smaller than that estimated above
(Eq. (6b)) by a factor of (λTF/ξ)

2 ≈ .005 . Since the far mass estimated before is already
small, this additional contribution is smaller still, and therefore negligible. In fact in the
perfect screening approximation, where the total electro-chemical potential δµ is set equal
to zero locally, we get back the result of Eq. (6), the contribution of the additional terms
being zero as expected. It is worth emphasizing that the results obtained from the phase-
only functional are essentially microscopic (see the Feynman diagrams in Fig. 1 and Fig.
2) and give an accurate estimate of the contribution to the vortex mass from the electronic
scattering states which are extended in nature and live mainly outside the core.

We now consider the contribution to the vortex mass arising from the core. The ampli-
tude of the superconducting order parameter changes as a function of radial distance from
the center of the vortex in the core region. We use a phenomenological Ginzburg - Landau
action functional per unit length

S =
∫

dt
∫

d~r





3

2mv2
F

∣

∣

∣

∣

∣

(

h̄

i

∂

∂t
− 2eA0

)

ψ(~r, t)

∣

∣

∣

∣

∣

2

− 1

2m

∣

∣

∣

∣

∣

(

h̄

i
∇− 2e

c
~A

)

ψ

∣

∣

∣

∣

∣

2

− V (|ψ|2)




+
∫

dt
∫

d~r





(∇A0)
2 − (∇× ~A)2

8π



 (8)

to estimate the core contribution to the vortex mass.
This functional is not derivable microscopically and has been chosen primarily as an

interpolating formula which reduces to the correct phase-only functional in the far region in
the limit Ψ → √

nse
iθ and gives the correct (linear in r) dependence for the amplitude of

the order parameter near the center of the vortex. The parameter m which appears above
is therefore fixed by requiring this functional to reduce to the action functional of Eq. (1)
in the “phase-only” approximation. For the potential V (|ψ|2) we assume the standard form
V (|ψ|2) = α

2
|ψ|2 + β

4
|ψ|4.

Starting with the early work of Suhl (16) and subsequent work by others (see Ref. (1)
and references therein) all estimates of the vortex mass have proceeded from this functional.
The value of the mass obtained from this functional is not expected to be very accurate
for reasons that are discussed below. However we present a calculation of the vortex mass
from this functional mainly to contrast and highlight the microscopic calculation presented
in Sec. III.

We again (see Eq. (4)) make the ansatz that for small velocity ~u, the vortex moves
rigidly i.e.

ψ(~r, t) = ψ0(~r − ~ut) (9)

where ψ0(~r) is the order parameter configuration associated with a static vortex. We further
assume a common and fairly accurate explicit form for ψ0(~r), namely

ψ0(~r) =
√
ns tanh(r/ξ) exp(iφ) (10)

where ns is the superfluid density far from the vortex, and (r, φ) are the radial and angular
coordinates of the two dimensional vector ~r. Again, minimizing Eq. (7) with respect to A0,
we find

∇2A0

4π
=

3eh̄

imv2
F

(

ψ
∂ψ∗

∂t
− ψ∗∂ψ

∂t

)

+
3

mv2
F

(2e)2|ψ|2A0 (11)
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. Using this condition in the action functional of Eq. (8) we find that the extra energy due
to vortex motion is

∆E =
∫

d~r

[

3h̄2

2mv2
F

|∂ψ
∂t

|2 − 3eh̄A0

2mv2
F i

(

ψ∗∂ψ

∂t
− ψ

∂ψ∗

∂t

)]

(12).

The first term in Eq. (12) is due to the density fluctuations induced by vortex motion,
and the second describes the reduction due to screening. The first term is readily computed
using the ansatz Eq. (9) for the time dependence of ψ(~r, t) and the form Eq. (10) for the
coordinate dependence of ψ0(~r). We are interested here only in the core contribution to the
mass, the contribution from the far region having been previously determined (Eq. (6)).
The radial integration in Eq. (12) is therefore performed over the range 0 < r < ξ (core
region). It gives a mass per unit length

m∗ core
unscreened ≃ m∗ c

u = 0.61
(

me

a0

)

(

a0

4λ∗TF

)2

(13)

where a0 = h̄2

mee2 is the Bohr radius, and (λ∗TF )−2 = 4πns(2e)
2/(mv2

F/3). For the cuprate
superconductors, we find that the unscreened core vortex mass per layer is

m∗ c
u ≈ 0.19me (14)

An unexpected, and incorrect, feature of Eq. (13) is the lack of dependence of the vortex
mass on the core size ξ. This is a consequence of the fact that the core mass is proportional
to the gradient energy per unit length in the core, which is scale invariant and does not
depend on the natural length scale ξ in two dimensions. This is inevitable in any local
continuum free energy theory.

We now consider the second or screening term in Eq. (12). One clearly needs to know
the electric potential A0 induced by vortex motion. Setting

A0(~r) = v(r)~u · φ̂ (15)

we find that v(r) satisfies the radial equation

[

∂2

∂r2
+

1

r

∂

∂r
− 1

r2
− 1

(λ∗TF )2

|ψ(r)|2
ns

]

v(r)

=
1

4π

h̄

2e
λ∗−2

TF

[

tanh2(r/ξ)

r

]

(16)

This is just the radial Poisson equation with a screening term (last term on the left hand
side), and a source term (on the right hand side) appropriate for a two dimensional system.
The ‘effective screening length’ λ∗TF

√
nS/|ψ(r)| is r dependent, and increases as |ψ(r)| de-

creases, i.e. with r → 0. This is yet another unrealistic feature of the Ginzburg Landau
theory, since one expects screening which is related to the electronic compressibility, to be
relatively independent of superconducting order. Eq. (16) is solved numerically, with ap-
propriate boundary conditions at r = ∞ and r = 0. The v(r) and the A0(~r) thus obtained
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(see Eq. (15)) are used to calculate the second term in the vortex core energy (Eq. (12)).
Adding the contributions of both the terms, the final result for the mass per layer is

m∗ (core) = m∗
c =

(

a0

4λ∗TF

)2 (
d

a0

)

[0.61 − 0.04]me (17)

where d is the interlayer separation. In Eq. (17), the first term in the square brackets is due
to the density distortion in the core, and the second term is the negligibly small correction
due to screening. Thus the total mass per layer, for a cuprate superconductor at T = 0K is

m∗
c ≃ 0.19me (18).

In the absence of a microscopic theory, the phenomenological Ginzburg Landau approach
has been used, mainly as a dimensional aid, to estimate the vortex inertial mass. The values
quoted ( Ref. (1) ) are in the range 0.2 to 2 me, and turn out to be (largely by accident)
not far from our microscopic result (see below) for parameters appropriate to the cuprates.
As a preliminary to the microscopic calculation which forms the main result of this paper,
we have performed a detailed calculation using this functional to bring out its inadequacies.
The above detailed analysis of the different contributions to the mass shows that within
the phenomenological GL theory it is due to the essentially unscreened density distortion
induced in the core. The unscreened mass estimated above too is incorrect as the gradient
expansion implicit in a phenomenological theory like the GL functional of Eq. (8), breaks
down at short length scales and strongly non-local (in space) effects lead to a much larger
mass (see Sec. III. below) in the unscreened case than calculated here. This picture is
clearly incorrect on another count as well. Electronic screening processes are not expected
to be affected much by the onset of superfluid order and a strong reduction of the mass is
expected because of Coulomb screening. This aspect too is explicitly seen in the microscopic
theory. In short, the microscopic calculation shows that the phenomenological GL picture
is wrong on all counts, as we shall see now.
III. Microscopic calculation of the vortex mass

We present now a microscopic calculation of the vortex inertial mass for a layered su-
perconductor at T = 0. The dynamics of the system of paired electrons is described by the
action

S =
∫

dt
∫

dz
∫

d~r
∑

l

[

Lf
l (~r, t) + L̃f

l (~r, t) + L
pair
l (~r, t)

]

δ(z − ld) + Sem (19a)

where

Lf
l (~r, t) =

∑

σ

ψ̄lσ(~r, t)



ih̄
∂

∂t
− ( h̄

i
∇− e

c
~A)2

2m
+ ǫF



ψlσ(~r, t) (19b)

L̃f
l (~r, t) = −eA0(~r, ld)

∑

σ

ψ̄lσ(~r, t)ψlσ(~r, t) (19c)

L
pair
l (~r, t) = −[∆l(~r, t)ψ̄l↑(~r, t)ψ̄l↓(~r, t) + h.c.] − |∆l(~r, t)|2

V
(19d)
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and

Sem =
∫

dt
∫

dz
∫

d~r
(∇A0)

2 − (∇× ~A)2

8π
(19e)

The electrons at (~r, t) on layer l, with spin σ are represented by the Grassmann field
variables ψ̄lσ(~r, t), ψlσ(~r, t). The electronic kinetic energy is described by the term Lf

l (~r, t),
i.e. Eq. (19b) and the electronic coupling to the Coulomb potential by the term L̃f

l (~r, t)
(Eq. (19c)). Eq. (19d) is the mean pair field decomposition of the Cooper pair attraction,
appropriate for a BCS s-wave superconductor and V is the strength of the attractive contact
interaction. The last term Sem (Eq. (19e)) is the electro-magnetic field contribution.

Several possible modifications and generalizations, such as order parameter symmetries
other than s-wave and effects due to quasiparticles at T 6= 0 are briefly discussed in Section
IV. We have neglected above the small interlayer (Josephson) coupling, so that the (pancake)
vortices in different layers

are coupled only via electric and magnetic fields. This neglect has very little effect on
the vortex mass, which is overwhelmingly due to processes occuring within a layer, and as
a matter of fact, to processes within the small core.

Every layer has one pancake vortex. All the pancake vortices are assumed to lie along a
straight line parallel to the magnetic field which is perpendicular to the layers and to move
with a uniform velocity ~u, so that the vortex (core) coordinate is ( ~R0, ld) where ~R0 = ~ut is
a vector in a plane parallel to the layers and the z co-ordinate ld specifies the position of
the layer. The pair potential ∆l(~r, t) in the presence of such a uniformly moving vortex is

a function of (~r − ~R0(t)). It can thus be written in an adiabatic approximation as

∆l(~r, t) = ∆0(|~r − ~R0(t)|) eiθ(~r− ~R0(t)) (20).

Here ∆0(r) is the magnitude of the pair potential and θ(~r) the phase, for a static vortex
situated at ~r = 0. The pair potential does not depend on l. The action functional relevant for
vortex dynamics is found by an expansion of the microscopic action in powers of the vortex
velocity u after integrating out the electronic degrees of freedom. The vortex mass is then
determined from the term quadratic in u (the dissipative and Magnus forces coming from the
linear term). This calculation is most conveniently carried out in the rest frame of the vortex.
In this frame, the pair potential seen by the electrons is ∆0(r) exp[i(θ(~r) − 2m~u·~r

h̄
+ mu2t

h̄
)]

i.e. the pair potential corresponding to a vortex at rest with extra phase factors coming
from the macroscopic supercurrent and kinetic energy of the electrons which acquire an
extra velocity −~u in this frame. The Coulomb potential seen by the electrons in this frame
becomes A0 − ~u

c
· ~A while the vector potential is the same as before. All physical quantities

can be calculated in this frame and then transformed to the lab frame as necessary. Note
that this does not assume Galilean invariance.

After a gauge transformation, the action for the system in this moving frame can be
written as

S = S0 + S1 (21)

where the static vortex action S0 is

S0 =
∫

dt
∫

d~r
∑

l

[

Lf
l (~r, t) − ∆0(r)[e

iθ(~r)ψ̄l↑(~r, t)ψ̄l↓(~r, t) + h.c.] − ∆2
0(r)

V

]
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−
∫

dt
∫

dz
∫

d~r
(∇× ~A)2

8π
(22a)

and the perturbation due to vortex motion is contained in

S1 =
∫

dt
∫

d~r
∑

l

[~u · ~pl(~r, t) − eA0(~r, ld)ρl(~r, t)] +
∫

dt
∫

dz
∫

d~r
(∇A0)

2

8π
(22b)

In Eq. (22b), ~pl(~r, t) is the momentum density operator for the lth layer,

~pl(~r, t) =
∑

σ

ψ̄lσ(~r, t)
h̄

i
∇ψlσ(~r, t) (23a)

and ρl(~r, t) is the density operator

ρl(~r, t) =
∑

σ

ψ̄lσ(~r, t)ψlσ(~r, t) (23b)

The first term in Eq. (22b) is linear in ~u, coupling to the electron momentum. The second
term is the electric potential energy of the (nonuniform) electron density around the moving
vortex. The associated electric potential has to be determined self consistently.

Since the London screening length (λ) is much larger than the core size (ξ), the magnetic
field in the core is nearly the same as the external magnetic field, deviations from this being
of order (ξ/λ)2. However, the vector potential associated with this field is negligible in
comparison with the gradient of the phase of the superconducting order parameter and has
been ignored in the following calculations. The former ≈ H r whereas the latter ≈ φ0/r.
Thus for the core region (r ≤ ξ), we find that for H ≪ φ0/ξ

2 the vector potential may be
ignored (20). Corrections due to the vector potential can be estimated to be of order H/Hc2

where H is the external magnetic field and Hc2 is the upper critical field and are therefore
small in the dilute vortex limit.

Now a systematic expansion in powers of ~u becomes possible by integrating out the
electrons giving rise to the Lagrangian that describes vortex dynamics. Dynamics of vortices
(classical or quantum) can be studied either by working directly with the vortex action or
alternately by introducing a canonically conjugate momentum which permits one to go over
to the Hamiltonian formalism.

The Magnus and dissipative forces come from the term linear in ~u and can be obtained
by taking the gradient of this term with respect to the vortex co-ordinate (37). The inertial
term in the action is quadratic in the vortex velocity. We are thus interested in the change of
action to second order in ~u, the coefficient of (u2/2) in the change being the vortex effective
mass m∗. Clearly, this is calculable by going to second order in u and A0. For ease of
presentation and also to emphasize the importance of Coulomb screening in the core, we do
this in two stages. First, we find the unscreened vortex mass, i.e. in S1 (Eq. (22 b)), we turn
off the Coulomb interaction by putting e = 0, and calculate the second order shift. We then
calculate the effect of Coulomb interactions, i.e. the effect of the electric potential due to the
electron charge density change consequent on vortex motion. We would like to emphasize
that the unscreened mass calculated here corresponds to the contribution of the bound states

localised in the vortex core. The contribution of bound states is finite. For a (hypothetical)
neutral superconductor, this term is to be added to the contribution from the region outside
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the core. This can be calculated from the (microscopically derived) phase-only functional
(Eq. 1) by setting e = 0, and as mentioned earlier, is logarithmically divergent because
longitudinal density fluctuations associated with vortex motion are not screened. Thus for
the uncharged superconductor, the finite core contribution can be neglected in comparision
with the log diverging far contribution.

For a charged superconductor, the core contribution has to be calculated with the inclu-
sion of screening effects which, we show ( Eq. (43) below) reduces the ‘unscreened’ or e = 0
mass by a factor of fifty or more. To this we have to add the m∗ due to the far region, which
because of Coulomb screening is finite, and is actually negligibly small (Eq. (6c)).

The second order effective Lagrangian due to just the ~u.~p term in S1 is given using
standard many body perturbation theory by

m∗

0

2
u2 where

m∗
0 = i

∫

d~r
∫

d~r′
∫

dt
〈

T
[

px
l (~r, t)p

x
l (~r

′, 0)
]〉

= −
∫

d~r
∫

d~r′χxx
l (~r, ~r′) (24)

In Eq. (24), the vortex velocity has been assumed to be in the x-direction. Note that intra-
layer averages such as Eq. (24) do not depend on the layer index. The correlation function in
Eq. (24) is calculated with respect to the unperturbed action S0 (Eq. (22a)) which describes
a single static vortex. This last problem of a static vortex has been studied extensively using
the Bogoliubov-de Gennes self-consistent field theory (20-23). The electronic eigenstates, in
the presence of a static vortex, are bound states which are localised and have appreciable
amplitude only in the core of the vortex, or extended states which are scattered by the su-
perfluid velocity and are primarily in the region outside the vortex core where the amplitude
of the order parameter is nearly constant. The latter are well described by neglecting the
variation in the amplitude of the order parameter and the scattering processes contributing
to the mass involving these states are just those considered in the Feynman diagrams (Fig.
1) contributing to the phase-only functional in Eq. (1). Thus the mass contribution from the
deformation of the scattering states is accurately estimated by the calculation proceeding
from the phase-only functional of Eq. (1) and has been shown to be negligibly small due to
efficient screening. We will therefore concentrate in the following only on the contribution
of the localised states to the correlation function of Eq. (24) to find the core contribution
to the vortex mass.

The eigenfunctions of the Bogoliubov-de Gennes equations for a single layer which are
localised in the vortex core are the amplitudes uµ(~r) and vµ(~r), labelled by the (azimuthal)
angular momentum quantum number µ because of the cylindrical symmetry of the single
vortex problem. The Bogulibov amplitudes are related to the fermion field operators by the
relations

ψ↑(~r, t) =
∑

allµ
uµ(~r)γµ(t) (25a)

and
ψ†
↓(~r, t) =

∑

allµ

vµ(~r)γµ(t) (25b)

Here µ runs over all half-odd integers (positive as well as negative). The quasi-particle
annihilation operators γµ correspond to the empty (particle) states for µ > 0 and filled
(hole) states for µ < 0. In terms of the quasi-particle operators γµ, the Hamiltonian for the
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static vortex system described by the action S0 can be written in a diagonal form as,

H0 =
∑

{µ}

ǫµγ
+
µ γµ + constant (26a)

Our definition of the quasi-particle operators (Eq. (25)) differs from the standard definition
(20) by a particle-hole transformation. In doing this, use has been made of the fact that
if (uµ(~r), vµ(~r)) is an eigenstate with eigenvalue ǫµ, the state (−v∗µ(~r), u∗µ(~r)) is also an
eigenstate with eigenvalue −ǫµ. Thus,

(uµ(~r), vµ(~r)) = (−v∗−µ(~r), u∗−µ(~r)) (26b)

with
ǫµ = −ǫ−µ (26c)

for µ < 0. The ground state of the system has all states with µ < 0 occupied and all states
with µ > 0 empty.

The correlation function of Eq. (24) is easily evaluated in this representation. The vortex
mass can then be understood as arising from a polarization process involving a virtual (quasi-
particle) transition from the highest occupied to the lowest unoccupied state. This process
can also be viewed as a deformation of the ground state by the perturbation which mixes in
higher energy states. In terms of u and v, the momentum-momentum correlation function
can be written as

i
∫

dt
〈

T
[

px
l (~r, t)p

x
l (~r

′, 0)
]〉

= 2
unocc.
∑

µ>0

occ.
∑

µ′<0

(ǫµ − ǫµ′)−1 ×



u∗µ(~r)
h̄

i

∂uµ′(~r)

∂x



u∗µ′(~r′)
h̄

i

∂uµ(~r′)

∂x′
− vµ(~r′)

h̄

i

∂v∗µ′(~r′)

∂x′



+ h.c.



 (27).

The various terms here correspond to the different quasi-particle processes that contribute to
the polarization. There is a simple selection rule for nonvanishing matrix elements, namely
µ = −µ′ = 1/2. We discuss this now. The details are worked out in Appendix I. The
operator px has an angular dependence of the form cosφ (radial derivative term) and sin φ
(angular derivative term) where φ is the angle in the 2d plane of the vector ~r with respect
to the x axis. The amplitudes uµ(~r), vµ(~r) can be written (20-23) as

(

uµ(~r)

vµ(~r)

)

= e−iµφ

(

eiφ/2 f−
µ (r)

e−iφ/2 f+
µ (r)

)

(28)

where f±
µ (r) are functions only of the radial coordinate r. The φ dependence of uµ(~r), vµ(~r)

above implies that on integration of the matrix elements in Eq. (27) over the angle φ, the
only nonvanishing terms are (µ−µ′) = ±1. We also need one of the states µ to be unoccupied
and the other µ′ to be occupied. The only possibility among bound states is µ = −µ′ = 1

2
. To

understand this, we exhibit in Fig. 3, the spectrum of eigenstates for parameters appropriate
to the cuprate superconductor (23). The bound states within the gap have quantum numbers
µ = ±1

2
, ±3

2
, ......... The occupied (unoccupied) states have negative (positive) µ. It is now
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clear that the only virtual transitions that satisfy the selection rule ∆µ = ±1, and are
between occupied and unoccupied states, correspond to µ = −µ′ = 1

2
, i.e. the highest

occupied and lowest unoccupied bound states. With this simplification used in Eq. (27) and
the latter substituted into the expression Eq. (24) for m∗

0, we have

m∗
0 =

4|gx|2
ǫ1/2

(29a)

where

gx =
∫

d~rv1/2(~r)
h̄

i

∂u1/2(~r)

∂x
(29b)

We thus need to know the energy ǫ1/2 and the core bound state wavefunctions f±
1/2(r) in

order to find m∗
0. These have been determined self-consistently and numerically by Zhu et.

al. (22). We use here the variational forms

∆0(r) = ∆0 tanh(r/ξ) (30a)

f−
1/2(r) = A1/2J0(kF r)e

−r/2ξ (30b)

and
f+

1/2(r) = A1/2J1(kF r)e
−r/2ξ (30c)

where
A−2

1/2 =
∫

d~r[J2
0 (kF r) + J2

1 (kF r)]e
−r/ξ (30d)

is the normalisation factor. With ξ = 15Å, k−1
F = 3.36Å and ∆0 = 60 meV, the expectation

value of the energy < ǫ1/2 > is 69 K, close to the self-consistent numerical value of 66 K
obtained by Zhu et. al. (22). The wavefunctions are also very close. Using these, the
expression m∗

0 can be evaluated (see Appendix I for details), giving a value

m∗
0 ≃ 25me (31)

The vortex mass obtained above can be estimated by the following simple physical argu-
ments. The correlation function in Eq. (24) can be estimated as follows. Each of the
momentum operators gives a factor of h̄kF which is the typical electronic momentum. The
energy denominator of the correlation function (see Eq. (27)) is twice the bound state energy
ǫ1/2 which is the energy cost of the polarisation process involving creation of a ‘particle-hole’
pair. Finally there is a factor of two corresponding to electron spin. The bound state energy

(20) ǫ1/2 is about
∆2

0

2ǫF
. The core contribution to the unscreened vortex mass (for parameters

appropriate to the cuprates) is thus estimated to be

m∗
0 ≃

h̄2k2
F

ǫ1/2

≃ 100me (32).

This is larger than the value calculated above for the vortex mass (Eq. 31) by a factor
of four. This discrepancy arises because the matrix element in the detailed calculation is
smaller (by a factor of half approximately) than the dimensional estimate.

We now consider the effect of Coulomb interactions. The dipolar charge distribution
induced by vortex motion is screened efficiently by the electrons. This greatly reduces
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the vortex kinetic energy. The reduction of the vortex kinetic energy is calculated using
standard self-consistent linear response theory. The dipolar charge distribution produces
an extra electric potential i.e. changes the electrochemical potential of the system. Any
change in the electrochemical potential causes a change in density which therefore needs to
be calculated self-consistently. In the following, we outline the calculation of the reduction
of the vortex mass because of Coulomb screening. The details are provided in Appendix II.
Varying the action in Eqs. ( 21) and (22) with respect to the electric potential A0, we find
at the extremum, the Poisson equation

∇2A0(~r, z) = −4πe
∑

l

〈ρl(~r)〉 δ(z − ld) (33).

We find < ρl(~r) >, the electron density, to linear order in u and A0 to be

〈ρl(~r)〉 = e
∫

d~r′χ00
l (~r, ~r′)A0(~r′, ld) − u

∫

d~r′χ0x
l (~r, ~r′) (34).

In Eq. (34), the density-density and density-current response functions χ00 and χ0x are
given by

χ00
l (~r, ~r′) = −i

∫

dtθ(t)
〈[

ρl(~r, t), ρl(~r′, 0)
]〉

(35)

and
χ0x

l (~r, ~r′) = −i
∫

dtθ(t)
〈[

ρl(~r, t), p
x
l (~r

′, 0)
]〉

(36)

The second term on the right hand side of Eq. (34) is the source term for < ρl >; it has
to be determined by integrating the correlation function χ0x

l (~r, ~r′) over the co-ordinate ~r′.
This is evaluated to be ∫

χ0x
l (~r, ~r′)d~r′ = η(~r)λ (37)

where

η(~r) = 2

√

√

√

√

2

ǫ1/2

f−
1/2(r)f

+
1/2(r) sinφ (38a)

and

λ = −
√

√

√

√

2

ǫ1/2

h̄
∫

d~rv∗1/2(~r)
∂u∗1/2(~r)

∂x
(38b)

It is thus clear from Eq. (37) substituted into Eq. (34) that the charge distribution generated
by the vortex motion is proportional to sinφ i.e. it is dipolar in nature. We thus seek a
self-consistent solution to the Poisson equation of the form

A0(~r, z) = V (r, z) sin φ (39)

Substituting this form in Eqs. (33) and (34), and using Eq. (37) we solve for A0(~r, z) (see
Appendix II for details), to get

A0(~q, ld) = − 4πeuλη(~q)

1 + 2πe2M(0)

1

2q

(

sinh qd

cosh qd− 1

)

(40)
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where A0(~q, ld) and η(~q) are the two dimensional Fourier transforms of A0(~r, ld) and η(~r)
respectively. In Eq. (40), M(0) is given by

M(0) =
∫ d~q

(2π)2

| η(~q) |2
2q

(

sinh qd

cosh qd− 1

)

(41)

and has the physical significance of an irreducible polarizability . Knowing the electric
potential A0(~q, ld) (which is linear in u) we can integrate out the electrons and the harmonic
electric potential fluctuations in the action (Eq. (22)) to second order in u. The result for
the extra action per layer is

SKE =
∫

dt(uλ)2

[

1 − 2πe2M(0)

1 + 2πe2M(0)

]

(42)

where the first term in the square bracket is the large unscreened contribution calculated
earlier (Eq. (31)), and the cancelling second term gives the reduction because of screening.
Combining both these terms, we find m∗ to be

m∗ =
m∗

0

(1 + 2πe2M(0))
(43)

We see from Eq. (43) that there is a ‘dielectric’ screening of the vortex mass, i.e. the
factor in the denominator is a finite large number. This is due to the discrete level spectrum
in the core, in contrast to the continuum of states in a metal or the near continuum in
conventional superconductors giving ‘metallic’ screening. The core dielectric constant (ǫcore)
can be evaluated using the variational wave functions of Eqs. (28) and (30). The screening
reduces m∗

0 by a factor of about 50. The large dielectric constant can be understood as
being due to the high polarizability of the core quasiparticle system. Approximately, the
dielectric constant (ǫcore) is dimensionally given by the ratio of the core Coulomb energy and
the excitation energy (ǫ+− = 2ǫ1/2) necessary to create the particle-hole excitation which
contributes to the polarization process leading to screening (see Appendix II). Thus,

ǫcore ≃ (ECoulomb/Eexcitation) ≃ {(e2/ξ)/ǫ+−} ≃ 75 (44).

The detailed calculation yields a dielectric constant of 53. Thus the screened or effective
inertial mass of a vortex is rather small, being equal to

m∗ = (m∗
0/53) ≃ 0.5me (45)

This is our main result, for the mass per layer, at T = 0, when the field is along the c-axis.
We note that the mass Eq. (45) can be roughly estimated qualitatively by using the

physical estimates Eqs. (32) and (44), i.e.

m∗ ≃
(

h̄2k2
F/ǫ1/2

)/{(

e2/ξ
)

/2ǫ1/2

}

= (2k2
Fa0ξ)me (46).

This gives a valuem∗ ≃ 1.3me close to the the result Eq. (45) of the detailed calculation! It is
clear from the formal expressions, Eq. (29) and Eq. (43) for the effective mass, as well as the
approximate form Eq. (46) that m∗ is effectively, the ratio of two polarizabilities, current-
current and charge-charge. Vortex motion (in the rest frame of the vortex) gives rise to both
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supercurrent fluctuations and electric potential fluctuations. They are connected because
of gauge invariance. Since both polarizabilities involve the same energy denominator, this
drops out of m∗ (Eq. (46)). It is also clear, from the occurrence of kF , a0 and ξ in this
equation, that the vortex mass is related to the carrier density, core size as well as Coulomb
interactions. The small vortex mass in the cuprates is a consequence of the small core size
and the low carrier density in comparision with conventional superconductors.

In the next, concluding section, we discuss the approximations involved in the result
obtained by us, its generalization, and the question of when vortex mass related effects may
be observed.
IV. Discussion and Conclusion

A. Discussion of the Vortex Mass The microscopic calculation above uses an approx-
imate variational order parameter ∆ and corresponding Bogoliubov-deGennes amplitudes
(uµ, vµ) (Eq. (30)). An obvious improvement would be to solve exactly for these quantities
given only the parameters ∆0, ξ and the BCS relation ξ = (h̄vF/π∆0). This has been done
numerically (22). There is of course a fair amount of uncertainty in these parameters for
cuprate superconductors, quite apart from the question of whether an s-wave, BCS like or-
der parameter with a conventional kinetic energy functional is at all appropriate for cuprate
superconductors. However, within the s-wave BCS model, the exact expression Eq. (29)
and (43) for m∗ can be evaluated, once uµ, vµ and their first spatial derivative are known
for µ = 1/2. We have ignored the contribution due to transitions from the bound states
to the continuum, satisfying the selection rule ∆µ = ±1. The reasons are the smallness
of the matrix elements, the largeness of the energy denominator and very good screening.
A rough estimate shows that these change the mass estimated by about 10-20%. We have
also ignored contributions to the mass from polarisation processes involving the collective
excitations of the superconducting state. In the case of a neutral Fermi superfluid it has
been found by Niu et. al. (40) that the inclusion of these excitations, which correspond to
long wavelength density fluctuations, leads to a finite vortex mass in contrast to the loga-
rithmically divergent result obtained in our approach (see Section I.). However for the case
of a charged superconductor, which is the primary concern of this paper, the corresponding
mode is pushed up to the plasma frequency which is much larger than the other energies in
the problem and is therefore unlikely to contribute to the vortex mass in a significant way.

With increasing temperature, the gap ∆(T) and the inverse coherence length ξ(T )−1

decrease. The structure of the vortex core also changes. In principle, one can repeat the
T = 0 calculation with temperature dependent input parameters. At low temperatures
(kBT ≪ ǫ1/2) this would roughly have the effect of increasing the effective inertial mass of
the vortex as a function of temperature (Eq. 46). However, at higher temperatures (when
ǫ1/2 is of order or less than kBT ) an additional contribution to the vortex mass will accrue
from transitions involving thermally excited quasiparticles in the vortex core. A qualitatively
new effect which arises in this regime is that due to quasiparticles scattering off the moving
vortex, there is a damping of vortex motion. This dissipative term is generally included
phenomenologically (it is linear in vortex velocity u and contributes an imaginary term
to the action), though microscopic theories have been developed (25, 37). It is not clear
whether the two effects viz. thermal renormalization of the effective mass, and dissipation,
both due to thermal quasiparticles, are completely independent. Also, the regime where
the bound core level spacing ǫ1/2 is of order or less than kBT is clearly very different from
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the low temperature regime ǫ1/2 >> kBT . We have not considered the former dissipation
dominated ‘high temperature’ limit.

There is the related question of adiabaticity, which is contained in the assumption that
the order parameter of the system with one moving vortex is the same as that of the static
vortex, but with ~r → (~r − ~ut). It is expected that the vortex motion would distort the gap
function from its form in the static case. The distortions induced have to be determined self-
consistently at every order of ~u. Simanek (26) has recently considered this question and has
pointed out that the vortex velocity needs to be small enough such that (h̄ukF ) ≤ |ǫ1/2| =
(∆2

0/ǫF ) or u ≤ (uBCS)(∆0/ǫF ) where uBCS is the BCS critical velocity i.e. h̄uBCSkF ≃ ∆0.
The violation of this criterion means that the vortex motion can significantly distort the gap
function as well as the magnetic field and supercurrent distribution. The changes induced
by the vortex motion have to be self-consistently determined and it’s effects included in the
calculation of the vortex mass. However, at low vortex velocities (u ≪ uBCS), these effects
are small and have therefore been ignored.

We have made a Galilean transformation to the rest frame of the vortex to simplify the
calculation of change in action to second order in ~u. Inclusion of the effects of the periodic
lattice and impurity scattering is also possible within our formalism. Their interaction po-
tential with the electrons becomes explicitly time-dependent and leads to inelastic scattering
(38) of electrons whose effects have to be included while evaluating the correlation functions
of Eqs. (24), (35) and (36).

So far our discussion has been restricted to a single vortex. However, at larger magnetic
fields, in the presence of a vortex lattice, additional contributions coming from the vortex
lattice will have to be included. The periodicity of the pair potential broadens the localised
quasiparticle levels into energy bands and new contributions to the vortex mass as well as
the forces experienced by vortices are expected to arise from collective effects arising from
the vortex lattice (15). A totally different approach becomes necessary in the presence of
strong magnetic fields in the dense vortex limit near Hc2. The strong amplitude fluctuations
which allow the dissociation of a Cooper pair make the dynamics of the order parameter
diffusive in this regime. A calculation of the vortex mass will proceed from the Abrikosov
solution (36) of the GL equations for a triangular vortex lattice. Both the vortex effective
mass as well as the nature of the forces that drive the vortex dynamics in this regime are
subjects that require further study.

The core contribution to the vortex mass was estimated earlier microscopically by by
T. Hsu (42). He obtained an answer which is of the same order of magnitude as the core
contribution calculated by us in the abscence of Coulomb screening for parameters appro-
priate to the cuprates. Hsu used the Bogulibov De-Gennes formalism to obtain the vortex
acceleration in response to a transport supercurrent. The vortex mass is then deduced
from this equation by a comparision with a hypothetical force equation obtained by setting
the unknown vortex mass times the acceleration of the vortex equal to a Magnus force of
the size suggested by Nozieres and Vinen using arguements of fluid hydrodynamics. While
many aspects of the formalism are similar to ours we believe this method is unreliable for
determining the vortex mass. The Coulomb screening effects which are found to be vital for
giving rise to a small mass have been ignored. Even for the case of a neutral superfluid, the
uncertainty in the size as well as sign of the Magnus force cast doubts about a procedure
which relies on a knowledge of the Magnus force to deduce the core contribution to the
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vortex mass.
Recently, after completion of this work(15), a paper by Simanek (27) appeared where

a calculation of the vortex mass using discrete core states is presented. This calculation is
based on a TDGL functional, in terms of a single complex superconducting order parameter,
which is derived in the presence of a moving vortex and leads to a mass which is dimensionally
the same as our estimate for the unscreened mass. However, the all important screening
effect which reduces m∗ by a factor of 50-75, has not been considered at all in Simanek’s
calculation. Further extensions (41) along the lines of Ref. (27) have appeared during the
reviewing process. However, once again the substantial reduction in the vortex mass because
of Coulomb screening has been ignored.

The assumption of an s-wave like order parameter is not realistic. There is increasing
direct experimental evidence for a strongly anisotropic order parameter, or an order param-
eter with vanishing amplitude at some points in k (or r space) (28,29). Consider for example
a dx2−y2 like order parameter. The pair amplitude is nonlocal i.e. < ψ̄↑(~r′)ψ̄↓(~r) > vanishes

for ~r = ~r′, and has a dependence on the direction of (~r − ~r′) with a square symmetry. It
is thus clear that the Bogoliubov-deGennes equations are nonlocal mixing different angular
momentum eigenstates. Recent work by Volovik (30) and Ren and co-workers (35) (see also
Ref. 44 and references therein) has suggested that vortices in superconductors with dx2−y2

symmetry have a non-zero s-wave component in the core of the vortex which vanishes at the
vortex centre. Thus, the gapless bound state spectrum, which might have been expected
for d-wave superconductors with lines of nodes in the gap function (in k-space) is absent.
However, gapless excitations are available in the far region, where the s-wave component
vanishes and are likely to give rise to strong dissipative effects so that the nature of vortex
dynamics would be qualitatively very different. This is an area which needs much further
work (see for example ref. 30 and 35).

B. Observability of effects due to inertial mass

It is clear that if there is no dissipation and no Magnus force, both of which produce a
term in the action linear in velocity (10,11), the small inertial mass of a vortex would give rise
to strong quantum effects. The vortices are bosonic particles whose degeneracy temperature
is (eH/m∗c)(h̄/kB). This is of order 20K for an external field of 10T, if the effective mass
m∗ is about 0.5mel. If this limit is realized, then several novel possibilities would arise,
especially in strongly layered cuprate superconductors such as 2212. In these systems the
vortex liquid phase extends to very low temperatures, especially in high magnetic fields (31).
This liquid instead of becoming a solid, could on cooling become a quantum Bose liquid and
then a genuine vortex superfluid (32). Such a vortex superfluid is a new ground state with
unusual properties, most likely a new kind of insulator. The vortex superfluid could persist
till T = 0, or freeze into a quantum solid, whose spectrum of collective excitations (phonons)
would depend on the mass m∗. The dynamics of vortices in this regime would be that of
interacting bosons in a random potential.

It is not clear however that the quantum Bose regime of the many vortex system is
experimentally realizable. Firstly, at least for higher temperatures, there is strong dissipation
which dominates the dynamics in both the quantum and classical regimes. Secondly there
is a large Magnus force (9,10,11). If only the former were present, the mass could still be
relevant for phenomena like quantum creep. If only the Magnus force were present, as is
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believed to be the case in the cuprates where the onset of a dissipationless regime has been
reported (5), the system of vortices is like that of bosons in a strong ‘magnetic’ field, the
Magnus force being the analogue of the Lorentz force. The Hamiltonian of the system of 2d
vortices can be written as

Hvort =
∑

i

(~pi − ~ai)
2/2m∗ + (1/2)

∑

i,j

V (~ri − ~rj)

where (ax, ay) = (πh̄n/2)(−xi, yi) and V (~ri − ~rj) is the interaction between vortices. The
~a term is due to the Magnus force with n being the electron density per layer and m∗ is
the vortex effective mass. The ‘magnetic’ field associated with this Magnus term is rather
large, the cyclotron frequency being about 0.7 eV for m∗ ≃ 0.5me. Thus the Landau level
separation is large, and the vortex system is in the lowest Landau level with a low filling
fraction of (nv/n) where nv is the vortex density and n the electron density. The magnetic
length of the system, i.e. the cyclotron orbit size is rather small ∼ 7Å so that the dynamics
is that of the guiding centre; the inertial mass is irrelevant. Even in the strong Magnus force
limit, a large vortex mass has been shown (10) to give rise to quantum effects in phenomena
involving vortex tunneling. In particular the semi-classical action develops a linear in T
dependence, which would reflect in the observed rate of flux creep at low temperatures. In
the language of our paper, a large vortex mass would result in a reduction of the cyclotron
frequency, mixing in higher Landau levels and thus enhancing quantum effects. However,
the rather small value of the vortex mass obtained by us implies that this scenario is actually
not realised. The main uncertainty in vortex dynamics is the actual size of the Magnus force.
The contribution of the bound states i.e. of localised quasiparticles to the Magnus force and
the effect of disorder on it are major unsettled issues; there are a number of suggestions
(33,34) that these could reduce, cancel or reverse the Magnus force! The dynamics of an
isolated vortex with inertial mass, in the presence of a large Magnus force and dissipation
had been investigated recently (9-12). Another possibility is that additional Magnus like
forces could arise from the pair potential in the dense vortex lattice limit (15) with an
opposite sign. However, there is a lack of a clear microscopic theory. There is a growing
body of experimental evidence based on quantum creep (3), Hall measurements (6) and a.c.
electromagnetic response (14) that the Magnus force is actually much smaller than current
theoretical estimates (9, 10, 11). In that case, there exists the intriguing possibilty of the
formation of a correlated quantum Hall fluid of the bosonic vortices at low temperatures
(39). With the mounting evidence in the cuprates for a superconducting order parameter
which has dx2−y2 symmetry and quasiparticles whose mean free paths could be very long for
T ≪ Tc, a realistic picture of this whole field awaits a microscopic calculation of the inertial
mass, the Magnus force on a moving vortex and dissipation of its momentum for a d-wave
superconductor at low temperatures.
Acknowledgements:- We thankfully acknowledge stimulating and clarifying discussions
with B. K. Chakravarty, C. Dasgupta , D. Feinberg and H. R. Krishnamurthy.
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Appendix I

In this appendix we outline the evaluation of the correlation function (Eq. 24) which de-
termines the unscreened core contribution to the vortex mass. Using the Bogulibov transfor-
mation (Eq. 25) the field operators in Eq. (24) can be rewritten in terms of the quasiparticle
operators (γµ) to give

m∗
0 =

∫

dt
∫

d~r
∫

d~r′D(~r, ~r′; t) (AI.1)

where the correlation function D(~r, ~r′; t) is given by

D(~r, ~r′; t) =
∑

µ,ν,λ,η

∑

σ,σ′

fσ∗
µ (~r)

h̄

i

∂fσ
ν (~r)

∂x
fσ′∗

λ (~r′)
h̄

i

∂fσ′

η (~r′)

∂x′
P λ,η

µ,ν (t) (AI.2a)

where
P λ,η

µ,ν (t) = i〈T [γ†µ(t)γν(t)γ
†
λ(0)γη(0)]〉 (AI.2b)

. Here f ↑
µ(~r) = uµ(~r) and f ↓

µ(~r) = v∗µ(~r) and the summation with respect to µ, ν, λ and η
runs over both positive and negative values. The correlation function in Eq. (AI.2) is easily
evaluated using the diagonalized Hamiltonian (Eq. (26)) to yield the expression given in
Eq. (27).

We will now derive the selection rule mentioned in Section III. To find m∗
0 from the

correlation function of Eq. (27) we need to integrate with respect to the co-ordinates ~r and
~r′. The ~r -integration requires the evaluation of the integral

I1 =
∫

d~ru∗µ(~r)
h̄

i

∂uµ′(~r)

∂x
(AI.3)

Substituting the explicit forms of uµ(~r) and uµ′(~r) (Eq. (28)) we find that

I1 =
h̄

i

∫

drrf−
µ (r)

∂f−
µ′(r)

∂r

∫

dφ cosφei(µ−µ′)φ

+h̄(µ′ − 1/2)
∫

dr f−
µ (r)f−

µ′(r)
∫

dφ sinφei(µ−µ′)φ (AI.4)

The angular integrals in Eq. (AI.4) are zero unless µ − µ′ = ±1. This together with the
constraint µ > 0, µ′ < 0 implies that the only non-zero contribution to m∗

0 comes from
µ = −µ′ = 1/2. Making use of this selection rule, we find, after a little algebra, that the
expression for m∗

o reduces to Eq. (29). In arriving at this relation, we have used Eqs. (26b)
and (26c). The only remaining task is to evaluate the matrix element gx occuring in Eq.
(29). Substituting the explicit functional forms (Eq. (30)) into Eq. (29b) we find that

gx =
h̄

2ξ

∫∞
0 dx xe−xJ1(kF ξx)[−J0(kF ξx)/2 + kF ξJ

′
0(kF ξx)]

∫∞
0 dx xe−x[J2

0 (kF ξx) + J2
1 (kF ξx)]

(AI.5)

Evaluating the dimensionless integrals on the R.H.S. of Eq. (AI.5) we find that for param-
eters appropriate to the cuprates (kF ξ ≃ 4.47 )

| gx |≃ 1.12
h̄

ξ
(AI.6)

The largest contribution to gx in Eq. (AI.5) comes from the term involving kF ξJ
′
0(kF ξx).

However, unlike conventional superconductors, the relative smallness of the dimensionless
parameter kF ξ implies that the other term cannot be ignored.
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Appendix II

In the following, we present details of the calculation of the large reduction in the core
contribution to the vortex mass due to Coulomb screening. To solve the Poisson equation
(Eqs. (33) and (34)), it is necessary to determine the source term on the R.H.S. of Eq. (34)
by integrating the correlation function χ0x

l (~r, ~r′) over the co-ordinate ~r′. Making use of the
Bogulibov transformation ( Eq. (25)) and the diagonalised Hamiltonian (Eq. (26)) we find
(after some algebra) that

χ0x
l (~r, ~r′) = 2

unocc.
∑

µ>0

occ.
∑

ν<0

u∗µ(~r)uν(~r)

(ǫµ − ǫν)
[vµ(~r′)

h̄

i

∂v∗ν(~r
′)

∂x′
− u∗ν(~r

′)
h̄

i

∂uµ(~r′)

∂x′
] + h.c. (AII.1)

The operator h̄
i

∂
∂x

behaves like cos φ (sinφ) and as before, the integration over the co-

ordinate ~r′ (see Eq. (AI.4) and the discussion following it) gives the selection rule µ−ν = ±1
which together with the constraint µ > 0 and ν < 0 implies µ = −ν = 1/2. We therefore
find

∫

χ0x
l (~r, ~r′)d~r′ =

−2u∗1/2(~r)v
∗
1/2(~r)

ǫ1/2

∫

d~r′v1/2(~r′)
h̄

i

∂u1/2(~r′)

∂x′
+ h.c. (AII.2)

In writing Eq. (AII.2) we have used Eqs. (26b) and (26c). Now substituting the explicit
variational forms for u1/2(~r) and v1/2(~r) (Eqs. (28) and (30)) we arrive at Eqs. (37) and
(38). To proceed further, we have to solve the Poisson equation and get a self-consistent
solution for the scalar potential A0(~r, z) of the form assumed in Eq. (39). We will now
consider the other term on the R.H.S. of Eq. (34). This term represents the screening
charge induced by the Coulomb potential consequent to the electron density change induced
by the vortex motion; it has to be determined by integrating the product of χ00

l (~r, ~r′)and
A0(~r′, ld) with respect to the co-ordinate ~r′. Since the latter has an angular dependence of
the form sin φ we once again find that the only process which contributes to the polarization
involves a transition from the highest occupied state (ν = −1/2) to the lowest unoccupied
state (µ = 1/2). We thus find,

∫

d~r′χ00
l (~r, ~r′)A0(~r′, ld) = −η(~r)

2

∫

d~r′A0(~r′, ld)η(~r′) (AII.3)

Combining Eqs. (37) and (AII.3) with the Poisson equation (Eqs. (33) and (34)) we get

∇2A0(~r, z)

4π
= eη(~r)

∑

l

δ(z − ld)[uλ+
e

2

∫

d~r′η(~r′)A0(~r′, ld)] (AII.4)

Transforming to Fourier space, this can be rewritten in terms of the corresponding Fourier
components as

[−q2 − k2]A0(~q, k)

4π
= euλη(~q)

∑

l

exp [−ikld] +
e2η(~q)

2d

∑

m

∫

d~q′

(2π)2
η(−~q′)A0(~q′, k −

2πm

d
)

(AII.5)
This is an integral equation for the scalar potential A0. To solve for A0, we find it convenient
to introduce the quantity

X(k) =
1

d

∑

m

∫ d~q

(2π)2
η(−~q)A0(~q, k −

2πm

d
) (AII.6)
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Substituting Eq. (AII.6) in (AII.5) and making use of the property X(k) = X(k− 2πm
d

) for
any integer m, we solve for X(k) to get

X(k) =
−4πeuλM(k)

∑

l e
−ikld

1 + 2πe2M(k)
(AII.7)

where

M(k) =
∫

d~q

(2π)2

| η(~q) |2
2q

(

sinh qd

cosh qd− cos kd

)

(AII.8)

Substituting Eqs. (AII.7) and (AII.8) in Eq. (AII.5) we can now solve for A0(~q, k) to get

A0(~q, k) =
−4πeuλ

q2 + k2

η(~q)

1 + 2πe2M(k)

∑

l

exp (−ikld) (AII.9)

Fourier transforming the above equation with respect to the wave vector k we get A0(~q, ld)
(Eq. (40)).

We now consider the action Eq. (22). We first consider the electric field energy. Inte-
grating by parts, and making use of the Poisson equation (Eq. (33)) we get

∫

dz
∫

d~r
(∇A0(~r, z))

2

8π
=

−e
2

∑

l

∫

d~r
∫

d~r′A0(~r, ld)[uχ
0x
l (~r, ~r′) − eχ00

l (~r, ~r′)A0(~r′, ld)]

(AII.10)
On integrating out the electrons to second order in the vortex velocity u and the Coulomb
potential A0 we get the effective action

S ′ =
∑

l

∫

dt
∫

d~rd~r′[
−u2

2
χxx

l (~r, ~r′) − e2

2
A0(~r, ld)χ

00
l (~r, ~r′)A0(~r′, ld) + ueA0(~r, ld)χ

0x
l (~r, ~r′)]

(AII.11)
Combining Eqs. (AII.10) and (AII.11) we find that the effective action for the system,

to second order in u, is given by

SKE =
∑

l

∫

dt
∫

d~rd~r′[
−u2

2
χxx

l (~r, ~r′) +
ue

2
A0(~r, ld)χ

0x
l (~r, ~r′)] (AII.12)

The first term in SKE is the unscreened core contribution to the vortex mass evaluated earlier
(Eq. (24)) while the other term represents the reduction because of Coulomb screening. We
now substitute the explicit forms for χxx

l and χ0x
l . Doing a calculation very similar to the

one leading to Eqs. (37), (38) and (AII.2) we find
∫

d~rd~r′χxx
l (~r, ~r′) = −2λ2 (AII.13)

Substituting Eqs. (37) and (AII.13) into Eq. (AII.12) we get

SKE =
∑

l

∫

dt[u2λ2 +
euλ

2

∑

l

∫

d~rη(~r)A0(~r, ld)] (AII.14)

Fourier transforming the second term in Eq. (AII.14) and substituting the expression for
A0 (Eq. (40)) we finally arrive at Eq. (42).
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The only remaining task is to evaluate the polarizability M(0). Using Eq. (38a), we find
that

η(~q) = 2

√

√

√

√

2

ǫ1/2

∫

d~rf−
1/2(r)f

+
1/2(r) sinφe−i~q·~r (AII.15)

On substituting the variational forms (Eq. 30) for f−
1/2(r) and f+

1/2(r) and integrating over
the angular co-ordinate φ this reduces to

η(~q) = 2

√

√

√

√

2

ǫ1/2

2πi

A2
1/2

qy
q

∫ ∞

0
drrJ0(kF r)J1(kF r)J1(qr)e

−r/ξ (AII.16)

Combining Eq. (AII.16) with the expression for M(0) (Eq. (41)) we finally get

M(0) =
4π

A4
1/2ǫ1/2

∫

dq
sinh(qd)

cosh(qd) − 1
I2(q) (AII.17)

where
I(q) =

∫ ∞

0
drrJ0(kF r)J1(kF r)J1(qr)e

−r/ξ (AII.18)

Using Eqs. (30d), (43), (AII.17) and (AII.18) we are now in a position to calculate the
‘core dielectric constant’ ǫcore. We find that ǫcore = 1 + 2πe2M(0) is given by

ǫcore = 1 +
e2/ξ

ǫ+−

L1

L2
2

(AII.19)

where

L1 = 4
∫ ∞

0
dx

sinh(xd/ξ)

cosh(xd/ξ) − 1
f 2(x) (AII.20)

L2 =
∫ ∞

0
dx xe−x(J2

0 (kF ξx) + J2
1 (kF ξx)) (AII.21)

and
f(x) =

∫ ∞

0
dyyJ0(kF ξy)J1(kF ξy)J1(xy)e

−y (AII.22)

On evaluating these expressions (Eqs. (AII.19), (AII.20) and (AII.21) numerically we find
ǫcore ≃ 53.
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Figure Captions

Fig. 1 Feynman diagrams that contribute to the phase-only action functional of Eq.
1) at T = 0 in the clean limit on integrating out the electrons. The thick lines correspond
to the fermions, the wavy lines indicate the density fluctuations ρ = (h̄θ̇ − 2eA0) and the

dashed line stands for the supercurrent fluctuations ~j = (h̄∇θ − 2e ~A/c).
Fig. 2 Additional diagrams that contribute to the Galilean invariant action functional

of Eq. 7) on integrating out the electrons. The thick lines correspond to the fermions, the
wavy lines indicate the density fluctuations ρ = (h̄θ̇ − 2eA0) and the dashed line stands for

the supercurrent fluctuations ~j = (h̄∇θ − 2e ~A/c).
Fig. 3 Spectrum of bound states within the core (within the range −∆0 to ∆0) and of

continuum states outside it, with the angular momentum quantum numbers. The levels are
appropriate to the parameters mentioned in the text for a cuprate superconductor at T = 0.
The transition allowed by selection rules is shown by an arrow.
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