883 research outputs found

    GEM operation in helium and neon at low temperatures

    Full text link
    We study the performance of Gas Electron Multipliers (GEMs) in gaseous He, Ne and Ne+H2 at temperatures in the range of 2.6-293 K. In He, at temperatures between 62 and 293 K, the triple-GEM structures often operate at rather high gains, exceeding 1000. There is an indication that this high gain is achieved by Penning effect in the gas impurities released by outgassing. At lower temperatures the gain-voltage characteristics are significantly modified probably due to the freeze-out of impurities. In particular, the double-GEM and single-GEM structures can operate down to 2.6 K at gains reaching only several tens at a gas density of about 0.5 g/l; at higher densities the maximum gain drops further. In Ne, the maximum gain also drops at cryogenic temperatures. The gain drop in Ne at low temperatures can be reestablished in Penning mixtures of Ne+H2: very high gains, exceeding 10000, have been obtained in these mixtures at 50-60 K, at a density of 9.2 g/l corresponding to that of saturated Ne vapor near 27 K. The results obtained are relevant in the fields of two-phase He and Ne detectors for solar neutrino detection and electron avalanching at low temperatures.Comment: 13 pages, 14 figures. Accepted for publishing in Nucl. Instr. and Meth.

    A new measurement of K+(e4) decay and the s-wave pi-pi-scattering length a00

    Get PDF
    A sample of 400000 events from the decay K+->pi+pi-e+nu(e)(K(e4)) has been collected in experiment E865 at the Brookhaven AGS. The analysis of these data yields new measurements of the K(e4) branching ratio (4.11+-0.01+-0.11)*10**(-5)), the s-wave pi-pi scattering length a00=0.228+-0.012+-0.003, and the form factors F, G, and H of the hadronic current and their dependence on the invariant pi-pi mass

    An Improved upper limit on the decay K^+ -> pi^+ mu^+ e^-

    Full text link
    Based on results of a search for the lepton-family-number-violating decay K+→π+μ+e−K^+ \to \pi^+\mu^+ e^- with data collected by experiment E865 at the Alternating Gradient Synchrotron of Brookhaven National Laboratory, we place an upper limit on the branching ratio at 2.1×10−112.1 \times 10^{-11} (90% C.L.). Combining the results with earlier E865 data and those of a previous experiment, E777, an upper limit on the branching ratio of 1.3×10−111.3 \times 10^{-11} (90% C.L.) is obtained.Comment: v2: 13 pages, submitted to the Phys. Rev. D v3: 13 pages, resubmitted to Phys. Rev. D (corrections include: a more detailed overview of the combined analysis of the available experimntal data

    Congregational bonding social capital and psychological type : an empirical enquiry among Australian churchgoers

    Get PDF
    This study explores the variation in levels of bonding social capital experienced by individual churchgoers, drawing on data generated by the Australian National Church Life Survey, and employing a five-item measure of church-related bonding social capital. Data provided by 2065 Australian churchgoers are used to test the thesis that individual differences in bonding social capital are related to a psychological model of psychological types (employing the Jungian distinctions). The data demonstrated that higher levels of bonding social capital were found among extraverts (compared with introverts), among intuitive types (compared with sensing types) and among feeling types (compared with thinking types), but no significant differences were found between judging types and perceiving types
    • …
    corecore