14,922 research outputs found

    Ray and wave chaos in asymmetric resonant optical cavities

    Full text link
    Optical resonators are essential components of lasers and other wavelength-sensitive optical devices. A resonator is characterized by a set of modes, each with a resonant frequency omega and resonance width Delta omega=1/tau, where tau is the lifetime of a photon in the mode. In a cylindrical or spherical dielectric resonator, extremely long-lived resonances are due to `whispering gallery' modes in which light circulates around the perimeter trapped by total internal reflection. These resonators emit light isotropically. Recently, a new category of asymmetric resonant cavities (ARCs) has been proposed in which substantial shape deformation leads to partially chaotic ray dynamics. This has been predicted to give rise to a universal, frequency-independent broadening of the whispering-gallery resonances, and highly anisotropic emission. Here we present solutions of the wave equation for ARCs which confirm many aspects of the earlier ray-optics model, but also reveal interesting frequency-dependent effects characteristic of quantum chaos. For small deformations the lifetime is controlled by evanescent leakage, the optical analogue of quantum tunneling. We find that the lifetime is much shortened by a process known as `chaos-assisted tunneling'. In contrast, for large deformations (~10%) some resonances are found to have longer lifetimes than predicted by the ray chaos model due to `dynamical localization'.Comment: 4 pages RevTeX with 7 Postscript figure

    Possible approach to improve sensitivity of a Michelson interferometer

    Full text link
    We propose a possible approach to achieve an 1/N sensitivity of Michelson interferometer by using a properly designed random phase modulation. Different from other approaches, the sensitivity improvement does not depend on increasing optical powers or utilizing the quantum properties of light. Moreover the requirements for optical losses and the quantum efficiencies of photodetection systems might be lower than the quantum approaches and the sensitivity improvement is frequency independent in all detection band.Comment: 8 pages, 3 figures, new versio

    Gas Purity effect on GEM Performance in He and Ne at Low Temperatures

    Full text link
    The performance of Gas Electron Multipliers (GEMs) in gaseous He, Ne, He+H2 and Ne+H2 was studied at temperatures in the range of 3-293 K. This paper reports on previously published measurements and additional studies on the effects of the purity of the gases in which the GEM performance is evaluated. In He, at temperatures between 77 and 293 K, triple-GEM structures operate at rather high gains, exceeding 1000. There is an indication that this high gain is achieved through the Penning effect as a result of impurities in the gas. At lower temperatures the gain-voltage characteristics are significantly modified probably due to the freeze-out of these impurities. Double-GEM and single-GEM structures can operate down to 3 K at gains reaching only several tens at a gas density of about 0.5 g/l; at higher densities the maximum gain drops further. In Ne, the maximum gain also drops at cryogenic temperatures. The gain drop in Ne at low temperatures can be re-established in Penning mixtures of Ne+H2: very high gains, exceeding 104, have been obtained in these mixtures at 30-77 K, at a density of 9.2 g/l which corresponds to saturated Ne vapor density at 27 K. The addition of small amounts of H2 in He also re-establishes large GEM gains above 30 K but no gain was observed in He+H2 at 4 K and a density of 1.7 g/l (corresponding to roughly one-tenth of the saturated vapor density). These studies are, in part, being pursued in the development of two-phase He and Ne detectors for solar neutrino detection.Comment: 4 pages, 7 figure

    In Situ SiRNA Assembly in Living Cells for Gene Therapy with MicroRNA Triggered Cascade Reactions Templated by Nucleic Acids

    Get PDF
    The in situ generation of siRNAs in living cells can greatly enhance the specificity and efficiency of gene therapy. Inspired by the natural molecular machines that organize different compartments sequentially in a limited space to facilitate cellular process, this work constructs a DNA nanomachine (DNM) by alternately hybridizing two pairs of DNA/RNA hybrids to a DNA scaffold generated by rolling circle amplification for highly efficient in situ siRNA assembly in living cells. After target cell-specific delivery of DNM, intracellular specific microRNA can work as a trigger to operate the DNM by initiating DNA cascade displacement reaction between DNA/RNA hybrids along the scaffold for continuous generation of siRNAs. Using miR-21 as a model, efficient siRNAs generation is achieved via DNA templated cascade reaction, which demonstrated impressive suppressions to VEGF mRNA and protein expressions in cells and in vivo tumor growth and indicated promising application of the designed strategy in gene therapy

    The Effect of MyD88 Deficiency During Graft-Versus-Host Disease

    Get PDF
    Graft-versus-host disease is the onset of an un- wanted immune response in patients who have undergone bone marrow transplantation [1]. The effect of this unwanted immune response is lethal in many cases. The goal of this research is to reduce the effect of graft-versus-host disease which can possibly reduce the waiting time for an eligible bone marrow donor to appear. This paper focused on the MyD88 adaptor protein, which triggers biochemical signals that can initiate, maintain, expand, or terminate inflammatory sites [2]. Inflammatory sites are the areas where the immune cells are gathered to fight foreign pathogens [1]. Experiments were carried out wherein stem cells were extracted from C57BL/6 mice and injected into BALB.B mice. This experiment design establishes the allogeneic bone marrow transplantation because the minor histocompatibility complex gene is un-matched between the two strains of mice while the major histocompatibility complex gene is matched. We focused on the effect of MyD88 protein deficiency in transplan- tation recipient. The positive/negative controls for the allogeneic bone marrow transplantation and MyD88 knockout allogeneic bone marrow transplantation group were carefully observed for 28 days and assessed for survival, weight, and immune cell fraction changes. We found that MyD88 protein deficiency yields prolonged survival in graft-versus-host disease. Data also suggests that innate immunity is the dominant factor in graft-versus- host disease, not adaptive immunity. Future experiments with cytokine analysis in a similar experiment design will provide more information about the relationship between the innate immunity and the severity of graft versus host disease

    Genome-wide Analysis and Expression Profiling Suggest Diverse Roles of TCP Genes During Development and Stress Responses in Grapevine (Vitis vinifera L)

    Get PDF
    Teosinte branched 1/cycloidea/proliferating cell factor 1 (TCP) proteins are plant-specific transcription factors playing crucial roles in various biological processes, such as leaf development, flower symmetry, shoot branching and senescence. However, no comprehensive analysis of the TCP gene family has been reported in grapevine (Vitis vinifera L). Herein, a total of 15 TCP family members were identified in the genome of grapevine, located on eight of the 19 chromosomes. Phylogenetic and structural analyses showed that the VvTCPs were classified into two groups, designated as Class I and Class II. The Class II genes were further divided into two subclasses, the CIN subclass and the CYC/TB1 subclass. Genes belonging to the same subclass shared similar gene structures, conserved domains and motifs. Real-time PCR showed that almost all members of Class II exhibited organ-specific expression patterns, while members of Class I and the CIN Class were ubiquitously expressed in all the tissues examined, indicating multiple roles in the development of different grapevine organs. In addition, many members were strongly modulated by abiotic (cold, heat, drought) and biotic (downy mildew and powdery mildew infection) stresses, suggesting important and diverse regulatory roles in adverse conditions and plant immunity. The comprehensive in silico analysis of the grapevine TCP transcription factor family gives us some references to potential functions in grapevine development and stress responses
    • …
    corecore