281,969 research outputs found
Asteroseismic constraints on the OPAL opacity interpolation
The frequency difference between a model used only two-point interpolation of
opacity and a model used piecewise linear interpolation of opacity is of the
order of several microHertz at a certain stage, which is almost 10 times worse
than the observational precision of p-modes of solar-like stars. Therefore, the
two-point interpolation of opacity is unsuitable in modelling of solar-like
stars with element diffusion.Comment: 2 pages, 1 figure; to appear in the Proceedings of IAU Symp. 252 "The
Art of Modelling Stars in the 21st Century", Sanya, China, 6th-11th April
2008, (L. Deng, K.L. Chan & C. Chiosi, eds.
Concepts of quantum non-Markovianity: a hierarchy
Markovian approximation is a widely-employed idea in descriptions of the
dynamics of open quantum systems (OQSs). Although it is usually claimed to be a
concept inspired by classical Markovianity, the term quantum Markovianity is
used inconsistently and often unrigorously in the literature. In this report we
compare the descriptions of classical stochastic processes and quantum
stochastic processes (as arising in OQSs), and show that there are inherent
differences that lead to the non-trivial problem of characterizing quantum
non-Markovianity. Rather than proposing a single definition of quantum
Markovianity, we study a host of Markov-related concepts in the quantum regime.
Some of these concepts have long been used in quantum theory, such as quantum
white noise, factorization approximation, divisibility, Lindblad master
equation, etc.. Others are first proposed in this report, including those we
call past-future independence, no (quantum) information backflow, and
composability. All of these concepts are defined under a unified framework,
which allows us to rigorously build hierarchy relations among them. With
various examples, we argue that the current most often used definitions of
quantum Markovianity in the literature do not fully capture the memoryless
property of OQSs. In fact, quantum non-Markovianity is highly
context-dependent. The results in this report, summarized as a hierarchy
figure, bring clarity to the nature of quantum non-Markovianity.Comment: Clarifications and references added; discussion of the related
classical hierarchy significantly improved. To appear in Physics Report
Universality of Long-Range Correlations in Expansion-Randomization Systems
We study the stochastic dynamics of sequences evolving by single site
mutations, segmental duplications, deletions, and random insertions. These
processes are relevant for the evolution of genomic DNA. They define a
universality class of non-equilibrium 1D expansion-randomization systems with
generic stationary long-range correlations in a regime of growing sequence
length. We obtain explicitly the two-point correlation function of the sequence
composition and the distribution function of the composition bias in sequences
of finite length. The characteristic exponent of these quantities is
determined by the ratio of two effective rates, which are explicitly calculated
for several specific sequence evolution dynamics of the universality class.
Depending on the value of , we find two different scaling regimes, which
are distinguished by the detectability of the initial composition bias. All
analytic results are accurately verified by numerical simulations. We also
discuss the non-stationary build-up and decay of correlations, as well as more
complex evolutionary scenarios, where the rates of the processes vary in time.
Our findings provide a possible example for the emergence of universality in
molecular biology.Comment: 23 pages, 15 figure
Interdot Coulomb repulsion effect on the charge transport of parallel double single electron transistors
The charge transport behaviors of parallel double single electron transistors
(SETs) are investigated by the Anderson model with two impurity levels. The
nonequilibrium Keldysh Green's technique is used to calculate the
current-voltage characteristics of system. For SETs implemented by quantum dots
(QDs) embedded into a thin layer, the interdot Coulomb repulsion is
more important than the interdot electron hopping as a result of high potential
barrier height between QDs and . We found that the interdot Coulomb
repulsion not onlyleads to new resonant levels, but also creates negative
differential conductances.Comment: 12 pages, 7 figure
Soliton solution of continuum magnetization-equation in conducting ferromagnet with a spin-polarized current
Exact soliton solutions of a modified Landau-Lifshitz equation for the
magnetization of conducting ferromagnet in the presence of a spin-polarized
current are obtained by means of inverse scattering transformation. From the
analytical solution effects of spin-current on the frequency, wave number, and
dispersion law of spin wave are investigated. The one-soliton solution
indicates obviously current-driven precession and periodic shape-variation as
well. The inelastic collision of solitons by which we mean the shape change
before and after collision appears due to the spin current. We, moreover, show
that complete inelastic collisions can be achieved by adjusting spectrum and
current parameters. This may lead to a potential technique for shape control of
spin wave.Comment: 8 pages, 2 figure
- …