117,165 research outputs found
Regularization, Renormalization and Range: The Nucleon-Nucleon Interaction from Effective Field Theory
Regularization and renormalization is discussed in the context of low-energy
effective field theory treatments of two or more heavy particles (such as
nucleons). It is desirable to regulate the contact interactions from the outset
by treating them as having a finite range. The low energy physical observables
should be insensitive to this range provided that the range is of a similar or
greater scale than that of the interaction. Alternative schemes, such as
dimensional regularization, lead to paradoxical conclusions such as the
impossibility of repulsive interactions for truly low energy effective theories
where all of the exchange particles are integrated out. This difficulty arises
because a nonrelativistic field theory with repulsive contact interactions is
trivial in the sense that the matrix is unity and the renormalized coupling
constant zero. Possible consequences of low energy attraction are also
discussed. It is argued that in the case of large or small scattering lengths,
the region of validity of effective field theory expansion is much larger if
the contact interactions are given a finite range from the beginning.Comment: 7 page
The Solar pp and hep Processes in Effective Field Theory
The strategy of modern effective field theory is exploited to pin down
accurately the flux factors for the and processes in the Sun.
The technique used is to combine the high accuracy established in few-nucleon
systems of the "standard nuclear physics approach" (SNPA) and the systematic
power counting of chiral perturbation theory (ChPT) into a consistent effective
field theory framework. Using highly accurate wave functions obtained in the
SNPA and working to \nlo3 in the chiral counting for the current, we make
totally parameter-free and error-controlled predictions for the and
processes in the Sun.Comment: 5 pages, aipproc macros are included. Talk given at International
Nuclear Physics Conference 2001, Berkeley, California, July 30 - August 3,
200
The Solar Proton Burning Process Revisited In Chiral Perturbation Theory
The proton burning process p + p -> d + e(+) + \nu(e), important for the
stellar evolution of main-sequence stars of mass equal to or less than that of
the Sun, is computed in effective field theory using chiral perturbation
expansion to the next-to-next-to leading chiral order. This represents a
model-independent calculation consistent with low-energy effective theory of
QCD comparable in accuracy to the radiative np capture at thermal energy
previously calculated by first using very accurate two-nucleon wavefunctions
backed up by an effective field theory technique with a finite cut-off. The
result obtained thereby is found to support within theoretical uncertainties
the previous calculation of the same process by Bahcall and his co-workers.Comment: 30 pages, 2 eps files, aaspp4.sty needed, slightly modified, to be
published in Ap.
On Minimum Violations Ranking in Paired Comparisons
Ranking a set of objects from the most dominant one to the least, based on
the results of paired comparisons, proves to be useful in many contexts. Using
the rankings of teams or individuals players in sports to seed tournaments is
an example. The quality of a ranking is often evaluated by the number of
violations, cases in which an object is ranked lower than another that it has
dominated in a comparison, that it contains. A minimum violations ranking (MVR)
method, as its name suggests, searches specifically for rankings that have the
minimum possible number of violations which may or may not be zero. In this
paper, we present a method based on statistical physics that overcomes
conceptual and practical difficulties faced by earlier studies of the problem.Comment: 10 pages, 10 figures; typos corrected (v2
Comments on "Entropy of 2D Black Holes from Counting Microstates"
In a recent letter, Cadoni and Mignemi proposed a formulation for the
statistical computation of the 2D black holes entropy. We present a criticism
about their formulation.Comment: 5 pages, Latex, no figure
The quantization of the chiral Schwinger model based on the BFT-BFV formalism II
We apply an improved version of Batalin-Fradkin-Tyutin (BFT) Hamiltonian
method to the a=1 chiral Schwinger Model, which is much more nontrivial than
the a>1.\delta\xi$ in the measure. As a result, we explicitly
obtain the fully gauge invariant partition function, which includes a new type
of Wess-Zumino (WZ) term irrelevant to the gauge symmetry as well as usual WZ
action.Comment: 17 pages, To be published in J. Phys.
Element-by-element factorization algorithms for heat conduction
Element-by-element solution strategies are developed for transient heat conduction problems. Results of numerical tests indicate the effectiveness of the procedures proposed. The small database requirements and attractive architectural features of the algorithms suggest considerable potential for solving large scale problems
- âŠ