56,323 research outputs found

    Low Energy Precision Test of Supersymmetry

    Get PDF
    Supersymmetry (SUSY) remains one of the leading candidates for physics beyond the Standard Model, and the search for SUSY will be a central focus of future collider experiments. Complementary information on the viability and character of SUSY can be obtained via the analysis of precision electroweak measurements. In this review, we discuss the prospective implications for SUSY of present and future precision studies at low energy.Comment: 118 pages, review pape

    Parity-Violating Electron Scattering as a Probe of Supersymmetry

    Get PDF
    We compute the one-loop supersymmetric (SUSY) contributions to the weak charges of the electron (QWeQ_W^e) and proton (QWpQ_W^p) using the Minimal Supersymmetric Standard Model (MSSM). These q2=0q^2=0 vector couplings of the Z0Z^0-boson to fermions will be determined in two fixed-target, parity-violating electron scattering experiments. The SUSY loop contributions to QWpQ_W^p and QWeQ_W^e can be substantial, leading to several percent corrections to the Standard Model values for these quantities. We show that the relative signs of the SUSY loop effects on QWeQ_W^e and QWpQ_W^p are correlated and positive over nearly all of the MSSM parameter space, whereas inclusion of R-parity nonconserving interactions can lead to opposite sign relative shifts in the weak charges. Thus, a comparison of QWpQ_W^p and QWeQ_W^e measurements could help distinguish between different SUSY scenarios.Comment: 4 pages, 2 figure

    Probing Supersymmetry with Neutral Current Scattering Experiments

    Get PDF
    We compute the supersymmetric contributions to the weak charges of the electron and proton in the framework of Minimal Supersymmetric Standard Model. We also consider the ratio of neutral current to charged current cross sections, R_nu and R_nubar at nu (nubar)-nucleus deep inelastic scattering, and compare the supersymmetric corrections with the deviations of these quantities from the Standard Model predictions implied by the recent NuTeV measurement.Comment: 4 pages, contribution to the proceedings of CIPANP 2003 (May, 2003), New York Cit

    Pre-flare coronal dimmings

    Full text link
    In this paper, we focus on the pre-flare coronal dimmings. We report our multiwavelength observations of the GOES X1.6 solar flare and the accompanying halo CME produced by the eruption of a sigmoidal magnetic flux rope (MFR) in NOAA active region (AR) 12158 on 2014 September 10. The eruption was observed by the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamic Observatory (SDO). The photospheric line-of-sight magnetograms were observed by the Helioseismic and Magnetic Imager (HMI) aboard SDO. The soft X-ray (SXR) fluxes were recorded by the GOES spacecraft. The halo CME was observed by the white light coronagraphs of the Large Angle Spectroscopic Coronagraph (LASCO) aboard SOHO.} {About 96 minutes before the onset of flare/CME, narrow pre-flare coronal dimmings appeared at the two ends of the twisted MFR. They extended very slowly with their intensities decreasing with time, while their apparent widths (8-9 Mm) nearly kept constant. During the impulsive and decay phases of flare, typical fanlike twin dimmings appeared and expanded with much larger extent and lower intensities than the pre-flare dimmings. The percentage of 171 {\AA} intensity decrease reaches 40\%. The pre-flare dimmings are most striking in 171, 193, and 211 {\AA} with formation temperatures of 0.6-2.5 MK. The northern part of the pre-flare dimmings could also be recognized in 131 and 335 {\AA}.} To our knowledge, this is the first detailed study of pre-flare coronal dimmings, which can be explained by the density depletion as a result of the gradual expansion of the coronal loop system surrounding the MFR during the slow rise of the MFR.Comment: 6 pages, 8 figures, to be accepted for publication by A&

    Dirac-Schr\"odinger equation for quark-antiquark bound states and derivation of its interaction kerne

    Full text link
    The four-dimensional Dirac-Schr\"odinger equation satisfied by quark-antiquark bound states is derived from Quantum Chromodynamics. Different from the Bethe-Salpeter equation, the equation derived is a kind of first-order differential equations of Schr\"odinger-type in the position space. Especially, the interaction kernel in the equation is given by two different closed expressions. One expression which contains only a few types of Green's functions is derived with the aid of the equations of motion satisfied by some kinds of Green's functions. Another expression which is represented in terms of the quark, antiquark and gluon propagators and some kinds of proper vertices is derived by means of the technique of irreducible decomposition of Green's functions. The kernel derived not only can easily be calculated by the perturbation method, but also provides a suitable basis for nonperturbative investigations. Furthermore, it is shown that the four-dimensinal Dirac-Schr\"odinger equation and its kernel can directly be reduced to rigorous three-dimensional forms in the equal-time Lorentz frame and the Dirac-Schr\"odinger equation can be reduced to an equivalent Pauli-Schr\"odinger equation which is represented in the Pauli spinor space. To show the applicability of the closed expressions derived and to demonstrate the equivalence between the two different expressions of the kernel, the t-channel and s-channel one gluon exchange kernels are chosen as an example to show how they are derived from the closed expressions. In addition, the connection of the Dirac-Schr\"odinger equation with the Bethe-Salpeter equation is discussed

    Detection of a new methanol maser line with ALMA

    Full text link
    Aims. We aimed at investigating the structure and kinematics of the gaseous disk and outflows around the massive YSO S255 NIRS3 in the S255IR-SMA1 dense clump. Methods. Observations of the S255IR region were carried out with ALMA at two epochs in the compact and extended configurations. Results. We serendipitously detected a new, never predicted, bright maser line at about 349.1 GHz, which most probably represents the CH3_3OH 14114014_{1} - 14_{0} A+^{- +} transition. The emission covers most of the 6.7 GHz methanol maser emission area of almost 1^{\prime\prime} in size and shows a velocity gradient in the same sense as the disk rotation. No variability was found on the time interval of several months. It is classified as Class II maser and probably originates in a ring at a distance of several hundreds AU from the central star.Comment: 4 pages, 4 figures, accepted by Astronomy and Astrophysic

    Voltage-controlled wavelength conversion by terahertz electro-optic modulation in double quantum wells

    Get PDF
    An undoped double quantum well (DQW) was driven with a terahertz (THz) electric field of frequency \omega_{THz} polarized in the growth direction, while simultaneously illuminated with a near-infrared (NIR) laser at frequency \omega_{NIR}. The intensity of NIR upconverted sidebands \omega_{sideband}=\omega_{NIR} + \omega_{THz} was maximized when a dc voltage applied in the growth direction tuned the excitonic states into resonance with both the THz and NIR fields. There was no detectable upconversion far from resonance. The results demonstrate the possibility of using gated DQW devices for all-optical wavelength shifting between optical communication channels separated by up to a few THz.Comment: 3 pages, 6 figures. Figures 5 and 6 are JPEG files, figures/fig5.jpg and fig6.jp
    corecore