63,098 research outputs found

    The Classical and Quantum Theory of Relativistic p-Branes without Constraints

    Get PDF
    It is shown that a relativistic (i.e. a Poincar{\' e} invariant) theory of extended objects (called p-branes) is not necessarily invariant under reparametrizations of corresponding pp-dimensional worldsheets (including worldlines for p=0p = 0). Consequnetly, no constraints among the dynamical variables are necessary and quantization is straightforward. Additional degrees of freedom so obtained are given a physical interpretation as being related to membrane's elastic deformations ("wiggleness"). In particular, such a more general, unconstrained theory implies as solutions also those p-brane states that are solutions of the conventional theory of the Dirac-Nambu-Goto type.Comment: 21 page

    Mass Terms in Effective Theories of High Density Quark Matter

    Get PDF
    We study the structure of mass terms in the effective theory for quasi-particles in QCD at high baryon density. To next-to-leading order in the 1/pF1/p_F expansion we find two types of mass terms, chirality conserving two-fermion operators and chirality violating four-fermion operators. In the effective chiral theory for Goldstone modes in the color-flavor-locked (CFL) phase the former terms correspond to effective chemical potentials, while the latter lead to Lorentz invariant mass terms. We compute the masses of Goldstone bosons in the CFL phase, confirming earlier results by Son and Stephanov as well as Bedaque and Sch\"afer. We show that to leading order in the coupling constant gg there is no anti-particle gap contribution to the mass of Goldstone modes, and that our results are independent of the choice of gauge.Comment: 22 pages, 4 figure

    Irreversible Thermodynamics in Multiscale Stochastic Dynamical Systems

    Full text link
    This work extends the results of the recently developed theory of a rather complete thermodynamic formalism for discrete-state, continuous-time Markov processes with and without detailed balance. We aim at investigating the question that whether and how the thermodynamic structure is invariant in a multiscale stochastic system. That is, whether the relations between thermodynamic functions of state and process variables remain unchanged when the system is viewed at different time scales and resolutions. Our results show that the dynamics on a fast time scale contribute an entropic term to the "internal energy function", uS(x)u_S(x), for the slow dynamics. Based on the conditional free energy uS(x)u_S(x), one can then treat the slow dynamics as if the fast dynamics is nonexistent. Furthermore, we show that the free energy, which characterizes the spontaneous organization in a system without detailed balance, is invariant with or without the fast dynamics: The fast dynamics is assumed to reach stationarity instantaneously on the slow time scale; they have no effect on the system's free energy. The same can not be said for the entropy and the internal energy, both of which contain the same contribution from the fast dynamics. We also investigate the consequences of time-scale separation in connection to the concepts of quasi-stationaryty and steady-adiabaticity introduced in the phenomenological steady-state thermodynamics

    Molecular Ωb\Omega_b states

    Full text link
    Motivated by the recent finding of five Ωc\Omega_c states by the LHCb collaboration, and the successful reproduction of three of them in a recent approach searching for molecular states of meson-baryon with the quantum numbers of Ωc\Omega_c, we extend these ideas and make predictions for the interaction of meson-baryon in the beauty sector, searching for poles in the scattering matrix that correspond to physical states. We find several Ωb\Omega_b states: two states with masses 6405~MeV and 6465~MeV for JP=12J^P= \frac{1}{2}^-; two more states with masses 6427~MeV and 6665~MeV for 32\frac{3}{2}^-; and three states between 6500 and 6820~MeV, degenerate with JP=12,32J^P=\frac{1}{2}^-,\,\frac{3}{2}^-, stemming from the interaction of vector-baryon in the beauty sector.Comment: 11 pages, 9 tables; v2: discussion added, version accepted for publication in NP

    Massive quark effects in two flavor color superconductors

    Full text link
    The high density effective theory formalism (HDET) is employed to describe high density QCD with two massive flavors (2SC). The gap equation is derived and explicitly solved for the gap parameter. The parameters associated to the pseudo Nambu-Goldstone boson of U(1)AU(1)_A are evaluated in the limit μ\mu\to\infty and m/μm/\mu fixed. In particular we find for the velocity of the NG boson the relation v2=μ12m12μ22m22/3μ1μ2v^2=\sqrt{\mu_1^2-m_1^2}\sqrt{\mu_2^2-m_2^2}/3\mu_1\mu_2.Comment: Latex file. 14 pages, 2 figures. Some improvement in the presentation. 2 references added. Final version to be published in Physics Letter

    Helical motions in the jet of blazar 1156+295

    Get PDF
    The blazar 1156+295 was observed by VLBA and EVN + MERLIN at 5 GHz in June 1996 and February 1997 respectively. The results show that the jet of the source has structural oscillations on the milliarcsecond scale and turns through a large angle to the direction of the arcsecond-scale extension. A helical jet model can explain most of the observed properties of the radio structure in 1156+295.Comment: 6 pages, 2 figures, to appear in New Astronomy Reviews (EVN/JIVE Symposium No. 4, special issue
    corecore