38,756 research outputs found
Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanics
We describe how to generate an Einstein-Podolsky-Rosen (EPR) paradox between
a mesoscopic mechanical oscillator and an optical pulse. We find two types of
paradox, defined by whether it is the oscillator or the pulse that shows the
effect Schrodinger called "steering". Only the oscillator paradox addresses the
question of mesoscopic local reality for a massive system. In that case, EPR's
"elements of reality" are defined for the oscillator, and it is these elements
of reality that are falsified (if quantum mechanics is complete). For this sort
of paradox, we show that a thermal barrier exists, meaning that a threshold
level of pulse-oscillator interaction is required for a given thermal
occupation n_0 of the oscillator. We find there is no equivalent thermal
barrier for the entanglement of the pulse with the oscillator, nor for the EPR
paradox that addresses the local reality of the optical system. Finally, we
examine the possibility of an EPR paradox between two entangled oscillators.
Our work highlights the asymmetrical effect of thermal noise on quantum
nonlocality.Comment: 9 pages, 7 figure
Efficient Scheme for Perfect Collective Einstein-Podolsky-Rosen Steering
A practical scheme for the demonstration of perfect one-sided
device-independent quantum secret sharing is proposed. The scheme involves a
three-mode optomechanical system in which a pair of independent cavity modes is
driven by short laser pulses and interact with a movable mirror. We demonstrate
that by tuning the laser frequency to the blue (anti-Stokes) sideband of the
average frequency of the cavity modes, the modes become mutually coherent and
then may collectively steer the mirror mode to a perfect
Einstein-Podolsky-Rosen state. The scheme is shown to be experimentally
feasible, it is robust against the frequency difference between the modes,
mechanical thermal noise and damping, and coupling strengths of the cavity
modes to the mirror.Comment: 9 pages, 4 figure
Variable-frequency-controlled coupling in charge qubit circuits: Effects of microwave field on qubit-state readout
To implement quantum information processing, microwave fields are often used
to manipulate superconuducting qubits. We study how the coupling between
superconducting charge qubits can be controlled by variable-frequency magnetic
fields. We also study the effects of the microwave fields on the readout of the
charge-qubit states. The measurement of the charge-qubit states can be used to
demonstrate the statistical properties of photons.Comment: 7 pages, 3 figure
A Novel Large Moment Antiferromagnetic Order in K0.8Fe1.6Se2 Superconductor
The discovery of cuprate high Tc superconductors has inspired searching for
unconventional su- perconductors in magnetic materials. A successful recipe has
been to suppress long-range order in a magnetic parent compound by doping or
high pressure to drive the material towards a quantum critical point, which is
replicated in recent discovery of iron-based high TC superconductors. The
long-range magnetic order coexisting with superconductivity has either a small
magnetic moment or low ordering temperature in all previously established
examples. Here we report an exception to this rule in the recently discovered
potassium iron selenide. The superconducting composition is identified as the
iron vacancy ordered K0.8Fe1.6Se2 with Tc above 30 K. A novel large moment 3.31
{\mu}B/Fe antiferromagnetic order which conforms to the tetragonal crystal
symmetry has the unprecedentedly high an ordering temperature TN = 559 K for a
bulk superconductor. Staggeredly polarized electronic density of states thus is
suspected, which would stimulate further investigation into superconductivity
in a strong spin-exchange field under new circumstance.Comment: 5 figures, 5 pages, and 2 tables in pdf which arXiv.com cannot tak
Dynamical Quantum Memories
We propose a dynamical approach to quantum memories using an
oscillator-cavity model. This overcomes the known difficulties of achieving
high quantum input-output fidelity with storage times long compared to the
input signal duration. We use a generic model of the memory response, which is
applicable to any linear storage medium ranging from a superconducting device
to an atomic medium. The temporal switching or gating of the device may either
be through a control field changing the coupling, or through a variable
detuning approach, as in more recent quantum memory experiments. An exact
calculation of the temporal memory response to an external input is carried
out. This shows that there is a mode-matching criterion which determines the
optimum input and output mode shape. This optimum pulse shape can be modified
by changing the gate characteristics. In addition, there is a critical coupling
between the atoms and the cavity that allows high fidelity in the presence of
long storage times. The quantum fidelity is calculated both for the coherent
state protocol, and for a completely arbitrary input state with a bounded total
photon number. We show how a dynamical quantum memory can surpass the relevant
classical memory bound, while retaining a relatively long storage time.Comment: 16 pages, 9 figure
- …