19,588 research outputs found

    Magnetic Component of Quark-Gluon Plasma is also a Liquid!

    Full text link
    The so called magnetic scenario recently suggested in \cite{Liao_ES_mono} emphasizes the role of monopoles in strongly coupled quark-gluon plasma (sQGP) near/above the deconfinement temperature, and specifically predicts that they help reduce its viscosity by the so called "magnetic bottle" effect. Arguments for "magnetic liquid" in 1-2TcT_c based on lattice measurement of monopole density were provided in \cite{Chernodub}. Here we present results for monopole-(anti)monopole correlation functions from the same classical molecular dynamics simulations, which are found to be in very good agreement with recent lattice results \cite{D'Alessandro:2007su}. We show that the magnetic Coulomb coupling does run in the direction oppositeopposite to the electric one, as expected, and it is roughly inverse of the asymptotic freedom formula for the electric one. However, as TT decreases to TcT_c, the magnetic coupling never gets weak, with the plasma parameter always large enough (Γ>1\Gamma>1). This nicely agrees with empirical evidences from RHIC experiments, implying that magnetic objects cannot have large mean free path and should also form a good liquid with low viscosity.Comment: 4 pages, 4 figures. All figs updated. Important changes and new results included in v

    Towards Semantic Fast-Forward and Stabilized Egocentric Videos

    Full text link
    The emergence of low-cost personal mobiles devices and wearable cameras and the increasing storage capacity of video-sharing websites have pushed forward a growing interest towards first-person videos. Since most of the recorded videos compose long-running streams with unedited content, they are tedious and unpleasant to watch. The fast-forward state-of-the-art methods are facing challenges of balancing the smoothness of the video and the emphasis in the relevant frames given a speed-up rate. In this work, we present a methodology capable of summarizing and stabilizing egocentric videos by extracting the semantic information from the frames. This paper also describes a dataset collection with several semantically labeled videos and introduces a new smoothness evaluation metric for egocentric videos that is used to test our method.Comment: Accepted for publication and presented in the First International Workshop on Egocentric Perception, Interaction and Computing at European Conference on Computer Vision (EPIC@ECCV) 201

    Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark-gluon plasma in heavy ion collisions

    Full text link
    Chiral Magnetic Wave (CMW) is a gapless collective excitation of quark-gluon plasma in the presence of external magnetic field that stems from the interplay of Chiral Magnetic (CME) and Chiral Separation Effects (CSE); it is composed by the waves of the electric and chiral charge densities coupled by the axial anomaly. We consider CMW at finite baryon density and find that it induces the electric quadrupole moment of the quark-gluon plasma produced in heavy ion collisions: the "poles" of the produced fireball (pointing outside of the reaction plane) acquire additional positive electric charge, and the "equator" acquires additional negative charge. We point out that this electric quadrupole deformation lifts the degeneracy between the elliptic flows of positive and negative pions leading to v2(π+)<v2(π)v_2(\pi^+) < v_2(\pi^-), and estimate the magnitude of the effect.Comment: 4 pages, 3 figure

    Multi-wavelength variability properties of Fermi blazar S5 0716+714

    Full text link
    S5 0716+714 is a typical BL Lacertae object. In this paper we present the analysis and results of long term simultaneous observations in the radio, near-infrared, optical, X-ray and γ\gamma-ray bands, together with our own photometric observations for this source. The light curves show that the variability amplitudes in γ\gamma-ray and optical bands are larger than those in the hard X-ray and radio bands and that the spectral energy distribution (SED) peaks move to shorter wavelengths when the source becomes brighter, which are similar to other blazars, i.e., more variable at wavelengths shorter than the SED peak frequencies. Analysis shows that the characteristic variability timescales in the 14.5 GHz, the optical, the X-ray, and the γ\gamma-ray bands are comparable to each other. The variations of the hard X-ray and 14.5 GHz emissions are correlated with zero-lag, so are the V band and γ\gamma-ray variations, which are consistent with the leptonic models. Coincidences of γ\gamma-ray and optical flares with a dramatic change of the optical polarization are detected. Hadronic models do not have the same nature explanation for these observations as the leptonic models. A strong optical flare correlating a γ\gamma-ray flare whose peak flux is lower than the average flux is detected. Leptonic model can explain this variability phenomenon through simultaneous SED modeling. Different leptonic models are distinguished by average SED modeling. The synchrotron plus synchrotron self-Compton (SSC) model is ruled out due to the extreme input parameters. Scattering of external seed photons, such as the hot dust or broad line region emission, and the SSC process are probably both needed to explain the γ\gamma-ray emission of S5 0716+714.Comment: 43 pages, 13 figures, 3 tables, to be appeared in Ap

    A Case for Redundant Arrays of Hybrid Disks (RAHD)

    Get PDF
    Hybrid Hard Disk Drive was originally concepted by Samsung, which incorporates a Flash memory in a magnetic disk. The combined ultra-high-density benefits of magnetic storage and the low-power and fast read access of NAND technology inspires us to construct Redundant Arrays of Hybrid Disks (RAHD) to offer a possible alternative to today’s Redundant Arrays of Independent Disks (RAIDs) and/or Massive Arrays of Idle Disks (MAIDs). We first design an internal management system (including Energy-Efficient Control) for hybrid disks. Three traces collected from real systems as well as a synthetic trace are then used to evaluate the RAHD arrays. The trace-driven experimental results show: in the high speed mode, a RAHD outplays the purely-magnetic-disk-based RAIDs by a factor of 2.4–4; in the energy-efficient mode, a RAHD4/5 can save up to 89% of energy at little performance degradationPeer reviewe

    A (p,q) Deformation of the Universal Enveloping Superalgebra U(osp(2/2))

    Full text link
    We investigate a two parameter quantum deformation of the universal enveloping orthosymplectic superalgebra U(osp(2/2)) by extending the Faddeev-Reshetikhin-Takhtajan formalism to the supersymetric case. It is shown that Up,q(osp(2/2))U_{p,q}(osp(2/2)) possesses a non-commutative, non-cocommutative Hopf algebra structure. All the results are expressed in the standard form using quantum Chevalley basis.Comment: 8 pages; IC/93/41

    Renormalization Group Approach to Field Theory at Finite Temperature

    Get PDF
    Scalar field theory at finite temperature is investigated via an improved renormalization group prescription which provides an effective resummation over all possible non-overlapping higher loop graphs. Explicit analyses for the lambda phi^4 theory are performed in d=4 Euclidean space for both low and high temperature limits. We generate a set of coupled equations for the mass parameter and the coupling constant from the renormalization group flow equation. Dimensional reduction and symmetry restoration are also explored with our improved approach.Comment: 29 pages, can include figures in the body of the text using epsf.st
    corecore