1,590 research outputs found
Palladium(II) complexes of quinolinylaminophosphonates: synthesis, structural characterization, antitumor and antimicrobial activity
Three types of palladium(II) halide complexes of quinolinylaminophosphonates have been synthesized and studied. Diethyl and dibutyl [alpha-anilino-(quinolin-2-ylmethyl)]phosphonates (L1, 12) act as N,N-chelate ligands through the quinoline and aniline nitrogens giving complexes cis-[Pd(L1/12)X-2] (X Cl, Br) (1-4). Their 3-substituted analogues [alpha-anilino-(quinolin-3-ylmethyl)]phosphonates (L3, L4) form dihalidopalladium complexes trans-[Pd(L3/L4)(2)X-2] (5-8), with trans N-bonded ligand molecules only through the quinoline nitrogen. Dialkyl [alpha-(quinolin-3-ylamino)-N-benzyl]phosphonates (L5, L6) give tetrahalidodipalladium complexes [Pd-2(L5/L6)(3)X-4] (9-12), containing one bridging and two terminal ligand molecules. The bridging molecule is bonded to the both palladium atoms, one through the quinoline and the other through the aminoquinoline nitrogen, whereas terminal ligand molecules are coordinated each only to one palladium via the quinoline nitrogen. Each palladium ion is also bonded to two halide ions in a trans square-planar fashion. The new complexes were identified and characterized by elemental analyses and by IR, UV-visible, H-1, C-13 and P-31 nuclear magnetic resonance and ESI-mass spectroscopic studies. The crystal structures of complexes 1-4 and 6 were determined by X-ray structure analysis. The antitumor activity of complexes in vitro was investigated on several human tumor cell lines and the highest activity with cell growth inhibitory effects in the low micromolar range was observed for dipalladium complexes 11 and 12 derived from dibutyl ester L6. The antimicrobial properties in vitro of ligands and their complexes were studied using a wide spectrum of bacterial and fungal strains. No specific activity was noted. Only ligands L3 and L4 and tetrahalidodipalladium complexes 9 and 11 show poor activities against some Gram positive bacteria
Contribution of red blood cells to the compensation for hypocapnic alkalosis through plasmatic strong ion difference variations
Introduction Chloride shift is the movement of chloride between red
blood cells (RBC) and plasma (and vice versa) caused by variations in
pCO2. The aim of our study was to investigate changes in plasmatic
strong ion diff erence (SID) during acute variations in pCO2 and their
possible role in the compensation for hypocapnic alkalosis.Methods Patients admitted in this year to our ICU requiring extracorporeal
CO2 removal were enrolled. Couples of measurements
of gases and electrolytes on blood entering (v) and leaving (a) the
respiratory membrane were analyzed. SID was calculated as [Na+]
+ [K+] + 2[Ca2+] \u2013 [Cl\u2013] \u2013 [Lac\u2013]. Percentage variations in SID (SID%)
were calculated as (SIDv \u2013 SIDa) x 100 / SIDv. The same calculation was
performed for pCO2 (pCO2%). Comparison between v and a values was
performed by paired t test or the signed-rank test, as appropriate.
Results Analysis was conducted on 205 sample-couples of six enrolled
patients. A signifi cant diff erence (P <0.001) between mean values of
v\u2013a samples was observed for pH (7.41 \ub1 0.05 vs. 7.51 \ub1 0.06), pCO2
(48 \ub1 6 vs. 35 \ub1 7 mmHg), [Na+] (136.3 \ub1 4.0 vs. 135.2 \ub1 4.0 mEq/l), [Cl\u2013]
(101.5 \ub1 5.3 vs. 102.8 \ub1 5.2 mEq/l) and therefore SID (39.5 \ub1 4.0 vs.
36.9 \ub1 4.1 mEq/l). pCO2% and SID% signifi cantly correlated (r2 = 0.28,
P <0.001). Graphical representation by quartiles of pCO2% is shown in
Figure 1.
Conclusions As a reduction in SID decreases pH, the observed
movement of anions and cations probably limited the alkalinization
caused by hypocapnia. In this model, the only source of electrolytes
are blood cells (that is, no interstitium and no infl uence of the kidney
is present); it is therefore conceivable to consider the observed
phenomenon as the contribution of RBC for the compensation of acute
hypocapnic alkalosi
Biological rationale for the use of DNA methyltransferase inhibitors as new strategy for modulation of tumor response to chemotherapy and radiation
Epigenetic modifications play a key role in the patho-physiology of many tumors and the current use of agents targeting epigenetic changes has become a topic of intense interest in cancer research. DNA methyltransferase (DNMT) inhibitors represent a promising class of epigenetic modulators. Research performed yielded promising anti-tumorigenic activity for these agents in vitro and in vivo against a variety of hematologic and solid tumors. These epigenetic modulators cause cell cycle and growth arrest, differentiation and apoptosis. Rationale for combining these agents with cytotoxic therapy or radiation is straightforward since the use of DNMT inhibitor offers greatly improved access for cytotoxic agents or radiation for targeting DNA-protein complex. The positive results obtained with these combined approaches in preclinical cancer models demonstrate the potential impact DNMT inhibitors may have in treatments of different cancer types. Therefore, as the emerging interest in use of DNMT inhibitors as a potential chemo- or radiation sensitizers is constantly increasing, further clinical investigations are inevitable in order to finalize and confirm the consistency of current observations
Childhood Vaccinations and Type 1 Diabetes.
Type 1 diabetes (T1D) is the most common paediatric endocrine disease, and its frequency has been found to increase worldwide. Similar to all conditions associated with poorly regulated glucose metabolism, T1D carries an increased risk of infection. Consequently, careful compliance by T1D children with schedules officially approved for child immunization is strongly recommended. However, because patients with T1D show persistent and profound limitations in immune function, vaccines may evoke a less efficient immune response, with corresponding lower protection. Moreover, T1D is an autoimmune condition that develops in genetically susceptible individuals and some data regarding T1D triggering factors appear to indicate that infections, mainly those due to viruses, play a major role. Accordingly, the use of viral live attenuated vaccines is being debated. In this narrative review, we discussed the most effective and safe use of vaccines in patients at risk of or with overt T1D. Literature analysis showed that several problems related to the use of vaccines in children with T1D have not been completely resolved. There are few studies regarding the immunogenicity and efficacy of vaccines in T1D children, and the need for different immunization schedules has not been precisely established. Fortunately, the previous presumed relationship between vaccine administration and T1D appears to have been debunked, though some doubts regarding rotavirus vaccines remain. Further studies are needed to completely resolve the problems related to vaccine administration in T1D patients. In the meantime, the use of vaccines remains extensively recommended in children with this disease
In vivo Diffusion Tensor Magnetic Resonance Tractography of the Sheep Brain : An Atlas of the Ovine White Matter Fiber Bundles
Diffusion Tensor Magnetic Resonance Imaging (DTI) allows to decode the mobility of water molecules in cerebral tissue, which is highly directional along myelinated fibers. By integrating the direction of highest water diffusion through the tissue, DTI Tractography enables a non-invasive dissection of brain fiber bundles. As such, this technique is a unique probe for in vivo characterization of white matter architecture. Unraveling the principal brain texture features of preclinical models that are advantageously exploited in experimental neuroscience is crucial to correctly evaluate investigational findings and to correlate them with real clinical scenarios. Although structurally similar to the human brain, the gyrencephalic ovine model has not yet been characterized by a systematic DTI study. Here we present the first in vivo sheep (ovis aries) tractography atlas, where the course of the main white matter fiber bundles of the ovine brain has been reconstructed. In the context of the EU's Horizon EDEN2020 project, in vivo brain MRI protocol for ovine animal models was optimized on a 1.5T scanner. High resolution conventional MRI scans and DTI sequences (b-value = 1,000 s/mm2, 15 directions) were acquired on ten anesthetized sheep o. aries, in order to define the diffusion features of normal adult ovine brain tissue. Topography of the ovine cortex was studied and DTI maps were derived, to perform DTI tractography reconstruction of the corticospinal tract, corpus callosum, fornix, visual pathway, and occipitofrontal fascicle, bilaterally for all the animals. Binary masks of the tracts were then coregistered and reported in the space of a standard stereotaxic ovine reference system, to demonstrate the consistency of the fiber bundles and the minimal inter-subject variability in a unique tractography atlas. Our results determine the feasibility of a protocol to perform in vivo DTI tractography of the sheep, providing a reliable reconstruction and 3D rendering of major ovine fiber tracts underlying different neurological functions. Estimation of fiber directions and interactions would lead to a more comprehensive understanding of the sheep's brain anatomy, potentially exploitable in preclinical experiments, thus representing a precious tool for veterinaries and researchers
Morphometric study of the ventricular indexes in healthy ovine BRAIN using MRI.
BACKGROUND: Sheep (Ovis aries) have been largely used as animal models in a multitude of specialties in biomedical research. The similarity to human brain anatomy in terms of brain size, skull features, and gyrification index, gives to ovine as a large animal model a better translational value than small animal models in neuroscience. Despite this evidence and the availability of advanced imaging techniques, morphometric brain studies are lacking. We herein present the morphometric ovine brain indexes and anatomical measures developed by two observers in a double-blinded study and validated via an intra- and inter-observer analysis. RESULTS: For this retrospective study, T1-weighted Magnetic Resonance Imaging (MRI) scans were performed at 1.5 T on 15 sheep, under general anaesthesia. The animals were female Ovis aries, in the age of 18-24 months. Two observers assessed the scans, twice time each. The statistical analysis of intra-observer and inter-observer agreement was obtained via the Bland-Altman plot and Spearman rank correlation test. The results are as follows (mean ± Standard deviation): Indexes: Bifrontal 0,338 ± 0,032 cm; Bicaudate 0,080 ± 0,012 cm; Evans' 0,218 ± 0,035 cm; Ventricular 0,241 ± 0,039 cm; Huckman 1693 ± 0,174 cm; Cella Media 0,096 ± 0,037 cm; Third ventricle ratio 0,040 ± 0,007 cm. Anatomical measures: Fourth ventricle length 0,295 ± 0,073 cm; Fourth ventricle width 0,344 ± 0,074 cm; Left lateral ventricle 4175 ± 0,275 cm; Right lateral ventricle 4182 ± 0,269 cm; Frontal horn length 1795 ± 0,303 cm; Interventricular foramen left 1794 ± 0,301 cm; Interventricular foramen right 1,78 ± 0,317 cm. CONCLUSIONS: The present study provides baseline values of linear indexes of the ventricles in the ovine models. The acquisition of these data contributes to filling the knowledge void on important anatomical and morphological features of the sheep brain
- …