159,551 research outputs found
Transition Temperature of a Uniform Imperfect Bose Gas
We calculate the transition temperature of a uniform dilute Bose gas with
repulsive interactions, using a known virial expansion of the equation of
state. We find that the transition temperature is higher than that of an ideal
gas, with a fractional increase K_0(na^3)^{1/6}, where n is the density and a
is the S-wave scattering length, and K_0 is a constant given in the paper. This
disagrees with all existing results, analytical or numerical. It agrees exactly
in magnitude with a result due to Toyoda, but has the opposite sign.Comment: Email correspondence to [email protected] ; 2 pages using REVTe
Two-component Fermi gas with a resonant interaction
We consider a two-component Fermi gas interacting via a Feshbach molecular
state. It is shown that an important energy scale is
where is the Feshbach coupling constant and the mass of the particles.
Only when where is the Fermi
energy can the gas be expected to enter a universal state in the unitarity
limit on the atomic side of the resonance where there are no molecules present.
The universal state is distinct from the molecular gas state on the other side
of the resonance. We furthermore calculate the energy of the gas for this
universal state and our results are related to current experiments on Li
and K.Comment: 4 pages, 2 figure
Crossover from one to three dimensions for a gas of hard-core bosons
We develop a variational theory of the crossover from the one-dimensional
(1D) regime to the 3D regime for ultra-cold Bose gases in thin waveguides.
Within the 1D regime we map out the parameter space for fermionization, which
may span the full 1D regime for suitable transverse confinement.Comment: 4 pages, 2 figure
Fluidization of granular media wetted by liquid He
We explore experimentally the fluidization of vertically agitated PMMA
spheres wetted by liquid He. By controlling the temperature around the
point we change the properties of the wetting liquid from a normal
fluid (helium I) to a superfluid (helium II). For wetting by helium I, the
critical acceleration for fluidization () shows a steep increase
close to the saturation of the vapor pressure in the sample cell. For helium II
wetting, starts to increase at about 75% saturation, indicating that
capillary bridges are enhanced by the superflow of unsaturated helium film.
Above saturation, enters a plateau regime where the capillary force
between particles is independent of the bridge volume. The plateau value is
found to vary with temperature and shows a peak at 2.1 K, which we attribute to
the influence of the specific heat of liquid helium.Comment: 4 pages, 3 figures, Accepted by Phys. Rev. E as a rapid communicatio
N K and Delta K states in the chiral SU(3) quark model
The isospin I=0 and I=1 kaon-nucleon , , , wave phase shifts are
studied in the chiral SU(3) quark model by solving the resonating group method
(RGM) equation. The calculated phase shifts for different partial waves are in
agreement with the experimental data. Furthermore, the structures of the
states with L=0, I=1 and I=2 are investigated. We find that the
interaction between and in the case of L=0, I=1 is attractive,
which is not like the situation of the system, where the -wave
interactions between and for both I=0 and I=1 are repulsive. Our
numerical results also show that when the model parameters are taken to be the
same as in our previous and scattering calculations, the
state with L=0 and I=1 is a weakly bound state with about 2 MeV binding energy,
while the one with I=2 is unbound in the present one-channel calculation.Comment: 14 pages, 6 figures. PRC70,064004(2004
A pseudo-potential analog for zero-range photoassociation and Feshbach resonance
A zero-range approach to atom-molecule coupling is developed in analogy to
the Fermi-Huang pseudo-potential treatment of atom-atom interactions. It is
shown by explicit comparison to an exactly-solvable finite-range model that
replacing the molecular bound-state wavefunction with a regularized
delta-function can reproduce the exact scattering amplitude in the
long-wavelength limit. Using this approach we find an analytical solution to
the two-channel Feshbach resonance problem for two atoms in a spherical
harmonic trap
Kaon-nucleon interaction in the extended chiral SU(3) quark model
The chiral SU(3) quark model is extended to include the coupling between the
quark and vector chiral fields. The one-gluon exchange (OGE) which dominantly
governs the short-range quark-quark interaction in the original chiral SU(3)
quark model is now nearly replaced by the vector-meson exchange. Using this
model, the isospin I=0 and I=1 kaon-nucleon S, P, D, F wave phase shifts are
dynamically studied by solving the resonating group method (RGM) equation.
Similar to those given by the original chiral SU(3) quark model, the calculated
results for many partial waves are consistent with the experiment, while there
is no improvement in this new approach for the P_{13} and D_{15} channels, of
which the theoretical phase shifts are too much repulsive and attractive
respectively when the laboratory momentum of the kaon meson is greater than 300
MeV.Comment: 19 pages, 16 figures. Accepted by Phys. Rev.
S-wave quantum entanglement in a harmonic trap
We analyze the quantum entanglement between two interacting atoms trapped in
a spherical harmonic potential. At ultra-cold temperature, ground state
entanglement is generated by the dominated s-wave interaction. Based on a
regularized pseudo-potential Hamiltonian, we examine the quantum entanglement
by performing the Schmidt decomposition of low-energy eigenfunctions. We
indicate how the atoms are paired and quantify the entanglement as a function
of a modified s-wave scattering length inside the trap.Comment: 10 pages, 5 figures, to be apear in PR
- …