20,904 research outputs found

    Deformation-Driven Diffusion and Plastic Flow in Two-Dimensional Amorphous Granular Pillars

    Get PDF
    We report a combined experimental and simulation study of deformation-induced diffusion in compacted two-dimensional amorphous granular pillars, in which thermal fluctuations play negligible role. The pillars, consisting of bidisperse cylindrical acetal plastic particles standing upright on a substrate, are deformed uniaxially and quasistatically by a rigid bar moving at a constant speed. The plastic flow and particle rearrangements in the pillars are characterized by computing the best-fit affine transformation strain and non-affine displacement associated with each particle between two stages of deformation. The non-affine displacement exhibits exponential crossover from ballistic to diffusive behavior with respect to the cumulative deviatoric strain, indicating that in athermal granular packings, the cumulative deviatoric strain plays the role of time in thermal systems and drives effective particle diffusion. We further study the size-dependent deformation of the granular pillars by simulation, and find that different-sized pillars follow self-similar shape evolution during deformation. In addition, the yield stress of the pillars increases linearly with pillar size. Formation of transient shear lines in the pillars during deformation becomes more evident as pillar size increases. The width of these elementary shear bands is about twice the diameter of a particle, and does not vary with pillar size.Comment: 14 pages, 11 figure

    Resonator-Aided Single-Atom Detection on a Microfabricated Chip

    Full text link
    We use an optical cavity to detect single atoms magnetically trapped on an atom chip. We implement the detection using both fluorescence into the cavity and reduction in cavity transmission due to the presence of atoms. In fluorescence, we register 2.0(2) photon counts per atom, which allows us to detect single atoms with 75% efficiency in 250 microseconds. In absorption, we measure transmission attenuation of 3.3(3)% per atom, which allows us to count small numbers of atoms with a resolution of about 1 atom.Comment: 4.1 pages, 5 figures, and submitted to Physical Review Letter

    Decay of weak solutions to the 2D dissipative quasi-geostrophic equation

    Full text link
    We address the decay of the norm of weak solutions to the 2D dissipative quasi-geostrophic equation. When the initial data is in L2L^2 only, we prove that the L2L^2 norm tends to zero but with no uniform rate, that is, there are solutions with arbitrarily slow decay. For the initial data in LpL2L^p \cap L^2, with 1p<21 \leq p < 2, we are able to obtain a uniform decay rate in L2L^2. We also prove that when the L22α1L^{\frac{2}{2 \alpha -1}} norm of the initial data is small enough, the LqL^q norms, for q>22α1q > \frac{2}{2 \alpha -1} have uniform decay rates. This result allows us to prove decay for the LqL^q norms, for q22α1q \geq \frac{2}{2 \alpha -1}, when the initial data is in L2L22α1L^2 \cap L^{\frac{2}{2 \alpha -1}}.Comment: A paragraph describing work by Carrillo and Ferreira proving results directly related to the ones in this paper is added in the Introduction. Rest of the article remains unchange

    Nonlinear Discrete Systems with Nonanalytic Dispersion Relations

    Full text link
    A discrete system of coupled waves (with nonanalytic dispersion relation) is derived in the context of the spectral transform theory for the Ablowitz Ladik spectral problem (discrete version of the Zakharov-Shabat system). This 3-wave evolution problem is a discrete version of the stimulated Raman scattering equations, and it is shown to be solvable for arbitrary boundary value of the two radiation fields and initial value of the medium state. The spectral transform is constructed on the basis of the D-bar approach.Comment: RevTex file, to appear in Journ. Math. Phy

    A simple method for enhanced vibration-based structural health monitoring

    Get PDF
    This study suggests a novel method for structural vibration-based health monitoring for beams which only utilises the first natural frequency of the beam in order to detect and localise a defect. The method is based on the application of a static force in different positions along the beam. It is shown that the application of a static force on a damaged beam induces stresses at the defect which in turn cause changes in the structural natural frequencies. A very simple procedure for damage detection is suggested which uses a static force applied in just one point, in the middle of the beam. Localisation is made using two additional application points of the static force. Damage is modelled as a small notch through the whole width of the beam. The method is demonstrated and validated numerically, using a finite element model of the beam, and experimentally for a simply supported beam. Our results show that the frequency variation with the change of the force application point can be used to detect and in the same time localize very precisely even a very small defect. The method can be extended for health monitoring of other more complicated structures

    A simple method for enhanced vibration-based structural health monitoring

    Get PDF
    This study suggests a novel method for structural vibration-based health monitoring for beams which only utilises the first natural frequency of the beam in order to detect and localise a defect. The method is based on the application of a static force in different positions along the beam. It is shown that the application of a static force on a damaged beam induces stresses at the defect which in turn cause changes in the structural natural frequencies. A very simple procedure for damage detection is suggested which uses a static force applied in just one point, in the middle of the beam. Localisation is made using two additional application points of the static force. Damage is modelled as a small notch through the whole width of the beam. The method is demonstrated and validated numerically, using a finite element model of the beam, and experimentally for a simply supported beam. Our results show that the frequency variation with the change of the force application point can be used to detect and in the same time localize very precisely even a very small defect. The method can be extended for health monitoring of other more complicated structures

    An Hedonic Analysis of the Effects of Lake Water Clarity on New Hampshire Lakefront Properties

    Get PDF
    Policy makers often face the problem of evaluating how water quality affects a region's economic well-being. Using water clarity as a measure of the degree of eutrophication levels (as a lake becomes inundated with nutrients, water clarity decreases markedly), analysis is performed on sales data collected over a six-year period. Our results indicate that water clarity has a significant effect on prices paid for residential properties. Effects of a one-meter change in clarity on property value are also estimated for an average lake in four real estate market areas in New Hampshire, with effects differing substantially by area. Our findings provide state and local policy makers a measure of the cost of water quality degradation as measured by changes in water clarity, and demonstrate that protecting water quality may have a positive effect on property tax revenues.Resource /Energy Economics and Policy,

    Gas Purity effect on GEM Performance in He and Ne at Low Temperatures

    Full text link
    The performance of Gas Electron Multipliers (GEMs) in gaseous He, Ne, He+H2 and Ne+H2 was studied at temperatures in the range of 3-293 K. This paper reports on previously published measurements and additional studies on the effects of the purity of the gases in which the GEM performance is evaluated. In He, at temperatures between 77 and 293 K, triple-GEM structures operate at rather high gains, exceeding 1000. There is an indication that this high gain is achieved through the Penning effect as a result of impurities in the gas. At lower temperatures the gain-voltage characteristics are significantly modified probably due to the freeze-out of these impurities. Double-GEM and single-GEM structures can operate down to 3 K at gains reaching only several tens at a gas density of about 0.5 g/l; at higher densities the maximum gain drops further. In Ne, the maximum gain also drops at cryogenic temperatures. The gain drop in Ne at low temperatures can be re-established in Penning mixtures of Ne+H2: very high gains, exceeding 104, have been obtained in these mixtures at 30-77 K, at a density of 9.2 g/l which corresponds to saturated Ne vapor density at 27 K. The addition of small amounts of H2 in He also re-establishes large GEM gains above 30 K but no gain was observed in He+H2 at 4 K and a density of 1.7 g/l (corresponding to roughly one-tenth of the saturated vapor density). These studies are, in part, being pursued in the development of two-phase He and Ne detectors for solar neutrino detection.Comment: 4 pages, 7 figure
    corecore