95,339 research outputs found
A Thermal-Nonthermal Inverse Compton Model for Cyg X-1
Using Monte Carlo methods to simulate the inverse Compton scattering of soft
photons, we model the spectrum of the Galactic black hole candidate Cyg X-1,
which shows evidence of a nonthermal tail extending beyond a few hundred keV.
We assume an ad hoc sphere of leptons, whose energy distribution consists of a
Maxwellian plus a high energy power-law tail, and inject 0.5 keV blackbody
photons. The spectral data is used to constrain the nonthermal plasma fraction
and the power-law index assuming a reasonable Maxwellian temperature and
Thomson depth. A small but non-negligible fraction of nonthermal leptons is
needed to explain the power-law tail.Comment: 5 pages, 2 PostScript figure, uses aipproc.sty, to appear in
Proceedings of Fourth Compton Symposiu
PhyloCSF: a comparative genomics method to distinguish protein-coding and non-coding regions
As high-throughput transcriptome sequencing provides evidence for novel transcripts in many species, there is a renewed need for accurate methods to classify small genomic regions as protein-coding or non-coding. We present PhyloCSF, a novel comparative genomics method that analyzes a multi-species nucleotide sequence alignment to determine whether it is likely to represent a conserved protein-coding region, based on a formal statistical comparison of phylogenetic codon models. We show that PhyloCSF's classification performance in 12-species _Drosophila_ genome alignments exceeds all other methods we compared in a previous study, and we provide a software implementation for use by the community. We anticipate that this method will be widely applicable as the transcriptomes of many additional species, tissues, and subcellular compartments are sequenced, particularly in the context of ENCODE and modENCODE
Multipartite Entanglement Measures and Quantum Criticality from Matrix and Tensor Product States
We compute the multipartite entanglement measures such as the global
entanglement of various one- and two-dimensional quantum systems to probe the
quantum criticality based on the matrix and tensor product states (MPSs/TPSs).
We use infinite time-evolving block decimation (iTEBD) method to find the
ground states numerically in the form of MPSs/TPSs, and then evaluate their
entanglement measures by the method of tensor renormalization group (TRG). We
find these entanglement measures can characterize the quantum phase transitions
by their derivative discontinuity right at the critical points in all models
considered here. We also comment on the scaling behaviors of the entanglement
measures by the ideas of quantum state renormalization group transformations.Comment: 22 pages, 11 figure
Mass Spectrum and Bounds on the Couplings in Yukawa Models With Mirror-Fermions
The symmetric Yukawa model with mirror-fermions
in the limit where the mirror-fermion is decoupled is studied both analytically
and numerically. The bare scalar self-coupling is fixed at zero and
infinity. The phase structure is explored and the relevant phase transition is
found to be consistent with a second order one. The fermionic mass spectrum
close to that transition is discussed and a first non-perturbative estimate of
the influence of fermions on the upper and lower bounds on the renormalized
scalar self-coupling is given. Numerical results are confronted with
perturbative predictions.Comment: 7 (Latex) page
Deterministic Dense Coding and Faithful Teleportation with Multipartite Graph States
We proposed novel schemes to perform the deterministic dense coding and
faithful teleportation with multipartite graph states. We also find the
sufficient and necessary condition of a viable graph state for the proposed
scheme. That is, for the associated graph, the reduced adjacency matrix of the
Tanner-type subgraph between senders and receivers should be invertible.Comment: 10 pages, 1 figure;v2. discussions improve
Investigation of superlattice device structures
This report describes the investigation of growth properties, and the structure of epitaxial multilayer Si(Si(1x)Ge(x)) films grown on bulk Silicon Substrates. It also describes the fabrication and characterization of MOSFET and MESFET devices made on these epitaxial films. Films were grown in a CVD reactor using hydrides of Si and Ge with H2 and He as carrier gases. Growth temperatures were between 900 C and 1050 C with most films grown at 1000 C. Layer thickness was between 300A and 2000A and total film thickness was between 0.25 micro m and 7 micro m. The Ge content (X) in the alloy layers was between .05 and 0.2. N-type multilayer films grown on (100) p-type Si showed Hall mobility in the range 1000 to 1500 sq cm/v for an average carrier concentration of approx. 10 to the 16th power/cu cm. This is up to 50% higher than the Hall mobility observed in epitaxial Si films grown under the same conditions and with the same average carrier concentration. The mobility enhancement occurred in films with average carrier concentration (n) from 0.7 x 10 to the 16th power to 2 x 10 to the 17th power/cu cm, and total film thickness greater than 1.0 micro m. No mobility enhancement was seen in n-type multilayer films grown on (111) Si or in p-type multilayer films. The structure of the films was investigated was using SEM, TEM, AES, SIMS, and X-ray double crystal diffraction techniques. The film composition profile (AES, SIMS) showed that the transition region between layers is of the order of about 100A. The TEM examination revealed a well defined layered structure with fairly sharp interfaces and good crystalline quality. It also showed that the first few layers of the film (closest to the substrate) are uneven, most probably due to the initial growth pattern of the epitaxial film where growth occurs first in isolated islands that eventually growth and coalesce. The X-ray diffraction measurement determined the elastic strain and strain relief in the alloy layers of the film and the elastic strain in the intervening Si layers
- …
