27,863 research outputs found

    Kinematic Modelling of FES Induced Sit-to-stand Movement in Paraplegia

    Get PDF
    FES induced movements from indication is promising due to encouraging results being obtained by scholars. The kinematic model usually constitute the initial phase towards achieving the segmental dynamics of any rigid body system. It can be used to ascertain that the model is capable of achieving the desired goal. The dynamic model builds on the kinematic model and is usually mathematically cumbersome depending on the number of degrees-of-freedom. This paper presents a kinematic model applicable for human sit-to-stand movement scenario that will be used to obtain the dynamic model the FES induced movement in a later study. The study shows that the 6 DOF conceptualized sit-to-stand movement can be achieved conveniently using 4 DOF. The 4 DOF has an additional joint compared to similar earlier works which makes more it accurate and flexible. It is more accurate in the sense that it accommodates additional joint i.e. the neck joint whose dynamics could be captured. And more flexible in the sense that if future research uncover more contributions by the segments it can be easily incorporated including that of other segments e.g. the trunk, neck and upper limbs

    Entangled Quantum State Discrimination using Pseudo-Hermitian System

    Full text link
    We demonstrate how to discriminate two non-orthogonal, entangled quantum state which are slightly different from each other by using pseudo-Hermitian system. The positive definite metric operator which makes the pseudo-Hermitian systems fully consistent quantum theory is used for such a state discrimination. We further show that non-orthogonal states can evolve through a suitably constructed pseudo-Hermitian Hamiltonian to orthogonal states. Such evolution ceases at exceptional points of the pseudo-Hermitian system.Comment: Latex, 9 pages, 1 figur

    Pseudo-hermitian interaction between an oscillator and a spin half particle in the external magnetic field

    Full text link
    We consider a spin half particle in the external magnetic field which couples to a harmonic oscillator through some pseudo-hermitian interaction. We find that the energy eigenvalues for this system are real even though the interaction is not PT invariant.Comment: Latex, no figs, 8 pages. (To appear in Mod. Phys. Lett. A

    Spin dependent structure function g_1 at low x and low Q^2

    Get PDF
    Theoretical description of the spin dependent structure function g_1(x,Q^2) in the region of low values of x and Q^2 is presented. It contains the Vector Meson Dominance contribution and the QCD improved parton model suitably extended to the low Q^2 domain. Theoretical predictions are compared with the recent experimental data in the low x, low Q^2 region

    Search for a Signal on QCD Critical Point in Central Nucleus-Nucleus Collisions

    Full text link
    We discuss that the QCD critical point could appear in central collisions in percolation cluster. We suggest using the nuclear transparency effect and the one of the light nuclear production to identify the critical point.Comment: To appear in the proceedings of the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (QM2008), Jaipur, India, February 4-10, 200

    Diverse exact solutions to Davey–Stewartson model using modified extended mapping method

    Get PDF
    In this study, we obtain solitary wave solutions and other exact wave solutions for Davey–Stewartson equation (DSE), which explains how waves move through water with a finite depth while being affected by gravity and surface tension. The study is conducted with the aid of the modified extended mapping method (MEMM). A variety of distinct traveling wave solutions are furnished. The obtained solutions comprise dark, bright, and singular solitary wave solutions. Additionally, Jacobi elliptic function solutions, exponential wave solutions, singular periodic wave solutions, rational wave solutions, and periodic wave solutions are also offered. To help readers physically grasp the acquired solutions, graphical representations of some of the extracted solutions are provided

    Weak charge form factor and radius of 208Pb through parity violation in electron scattering

    Get PDF
    We use distorted wave electron scattering calculations to extract the weak charge form factor F_W(q), the weak charge radius R_W, and the point neutron radius R_n, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer q=0.475 fm−1^{-1}. We find F_W(q) =0.204 \pm 0.028 (exp) \pm 0.001 (model). We use the Helm model to infer the weak radius from F_W(q). We find R_W= 5.826 \pm 0.181 (exp) \pm 0.027 (model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in R_W from uncertainties in the surface thickness \sigma of the weak charge density. The weak radius is larger than the charge radius, implying a "weak charge skin" where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius R_n=5.751 \pm 0.175 (exp) \pm 0.026 (model) \pm 0.005 (strange) fm$, from R_W. Here there is only a very small error (strange) from possible strange quark contributions. We find R_n to be slightly smaller than R_W because of the nucleon's size. Finally, we find a neutron skin thickness of R_n-R_p=0.302\pm 0.175 (exp) \pm 0.026 (model) \pm 0.005 (strange) fm, where R_p is the point proton radius.Comment: 5 pages, 1 figure, published in Phys Rev. C. Only one change in this version: we have added one author, also to metadat

    Pseudo-unitary symmetry and the Gaussian pseudo-unitary ensemble of random matrices

    Full text link
    Employing the currently discussed notion of pseudo-Hermiticity, we define a pseudo-unitary group. Further, we develop a random matrix theory which is invariant under such a group and call this ensemble of pseudo-Hermitian random matrices as the pseudo-unitary ensemble. We obtain exact results for the nearest-neighbour level spacing distribution for (2 X 2) PT-symmetric Hamiltonian matrices which has a novel form, s log (1/s) near zero spacing. This shows a level repulsion in marked distinction with an algebraic form in the Wigner surmise. We believe that this paves way for a description of varied phenomena in two-dimensional statistical mechanics, quantum chromodynamics, and so on.Comment: 9 pages, 2 figures, LaTeX, submitted to the Physical Review Letters on August 20, 200

    Solitons in magneto-optic waveguides with Kudryashov’s law nonlinear refractive index for coupled system of generalized nonlinear Schrödinger’s equation using modified extended mapping method

    Get PDF
    In this work, we investigate the optical solitons and other waves through magneto-optic waveguides with Kudryashov’s law of nonlinear refractive index in the presence of chromatic dispersion and Hamiltonian-type perturbation factors using the modified extended mapping approach. Many classifications of solutions are established like bright solitons, dark solitons, singular solitons, singular periodic wave solutions, exponential wave solutions, rational wave, solutions, Weierstrass elliptic doubly periodic solutions, and Jacobi elliptic function solutions. Some of the extracted solutions are described graphically to provide their physical understanding of the acquired solutions
    • 

    corecore