98,029 research outputs found
On the Casimir effect for parallel plates in the spacetime with one extra compactified dimension
In this paper, the Casimir effect for parallel plates in the presence of one
compactified universal extra dimension is reexamined in detail. Having
regularized the expressions of Casimir force, we show that the nature of
Casimir force is repulsive if the distance between the plates is large enough,
which is disagree with the experimental phenomena.Comment: 7 pages, 3 figure
Maxwell Equation for the Coupled Spin-Charge Wave Propagation
We show that the dissipationless spin current in the ground state of the
Rashba model gives rise to a reactive coupling between the spin and charge
propagation, which is formally identical to the coupling between the electric
and the magnetic fields in the 2+1 dimensional Maxwell equation. This analogy
leads to a remarkable prediction that a density packet can spontaneously split
into two counter propagation packets, each carrying the opposite spins. In a
certain parameter regime, the coupled spin and charge wave propagates like a
transverse "photon". We propose both optical and purely electronic experiments
to detect this effect.Comment: 4 page
Cross-section and polarization of neutrino-produced 's made simple
Practical formulae are derived for the cross-section and polarization of the
lepton produced in deep-inelastic neutrino-nucleon scattering in the
frame of the simple quark-parton model.Comment: 10 pages, no figure
Self-management of context-aware overlay ambient networks
Ambient Networks (ANs) are dynamically changing and heterogeneous as they consist of potentially large numbers of independent, heterogeneous mobile nodes, with spontaneous topologies that can logically interact with each other to share a common control space, known as the Ambient Control Space. ANs are also flexible i.e. they can compose and decompose dynamically and automatically, for supporting the deployment of cross-domain (new) services. Thus, the AN architecture must be sophisticatedly designed to support such high level of dynamicity, heterogeneity and flexibility. We advocate the use of service specific overlay networks in ANs, that are created on-demand according to specific service requirements, to deliver, and to automatically adapt services to the dynamically changing user and network context. This paper presents a self-management approach to create, configure, adapt, contextualise, and finally teardown service specific overlay networks
Quantum Spin Hall Effect
The quantum Hall liquid is a novel state of matter with profound emergent
properties such as fractional charge and statistics. Existence of the quantum
Hall effect requires breaking of the time reversal symmetry caused by an
external magnetic field. In this work, we predict a quantized spin Hall effect
in the absence of any magnetic field, where the intrinsic spin Hall conductance
is quantized in units of . The degenerate quantum Landau
levels are created by the spin-orbit coupling in conventional semiconductors in
the presence of a strain gradient. This new state of matter has many profound
correlated properties described by a topological field theory
Vacuum ultraviolet photoabsorption of prime ice analogues of Pluto and Charon
Here we present the first Vacuum UltraViolet (VUV) photoabsorption spectra of ice analogues of Pluto and Charon ice mixtures. For Pluto the ice analogue is an icy mixture containing nitrogen (N2), carbon monoxide (CO), methane (CH4) and water (H2O) prepared with a 100:1:1:3 ratio, respectively. Photoabsorption of icy mixtures with and without H2O were recorded and no significant changes in the spectra due to presence of H2O were observed. For Charon a VUV photoabsorption spectra of an ice analogue containing ammonia (NH3) and H2O prepared with a 1:1 ratio was recorded, a spectrum of ammonium hydroxide (NH4OH) was also recorded. These spectra may help to interpret the P-Alice data from New Horizons
Initiation and Early Kinematic Evolution of Solar Eruptions
We investigate the initiation and early evolution of 12 solar eruptions,
including six active region hot channel and six quiescent filament eruptions,
which were well observed by the \textsl{Solar Dynamics Observatory}, as well as
by the \textsl{Solar TErrestrial RElations Observatory} for the latter. The
sample includes one failed eruption and 11 coronal mass ejections, with
velocities ranging from 493 to 2140~km~s. A detailed analysis of the
eruption kinematics yields the following main results. (1) The early evolution
of all events consists of a slow-rise phase followed by a main-acceleration
phase, the height-time profiles of which differ markedly and can be best fit,
respectively, by a linear and an exponential function. This indicates that
different physical processes dominate in these phases, which is at variance
with models that involve a single process. (2) The kinematic evolution of the
eruptions tends to be synchronized with the flare light curve in both phases.
The synchronization is often but not always close. A delayed onset of the
impulsive flare phase is found in the majority of the filament eruptions (5 out
of 6). This delay, and its trend to be larger for slower eruptions, favor ideal
MHD instability models. (3) The average decay index at the onset heights of the
main acceleration is close to the threshold of the torus instability for both
groups of events (although based on a tentative coronal field model for the hot
channels), suggesting that this instability initiates and possibly drives the
main acceleration.Comment: Accepted for publication in ApJ; 24 pages, 12 figures, 3 table
Enhancement of perfluorooctanoate and perfluorooctanesulfonate activity at acoustic cavitation bubble interfaces
Acoustic cavitation driven by ultrasonic irradiation decomposes and mineralizes the recalcitrant perfluorinated surfactants perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Pyrolytic cleavage of the ionic headgroup is the rate-determining step. In this study, we examine the sonochemical adsorption of PFOX, where X = S for PFOS and A for PFOA, by determining kinetic order and absolute rates over an initial PFOX concentration range of 20 nM to 200 μM. Sonochemical PFOX kinetics transition from pseudo-first-order at low initial concentrations, [PFOX]_i 40 μM, as the bubble interface sites are saturated. At PFOX concentrations below 100 μM, concentration-dependent rates were modeled with Langmuir−Hinshelwood (LH) kinetics. Empirically determined rate maximums, V_(Max)^(−PFOA) = 2230 ± 560 nM min^−1 and V_(Max)^(−PFOS) = 230 ± 60 nM min^−1, were used in the LH model, and sonochemical surface activities were estimated to be K_(Sono)^(PFOS) = 120000 M^−1 and K_(Sono)^(PFOA) = 28500 M^−1, 60 and 80 times greater than equilibrium surface activities, K_(Eq)^(PFOS) and K_(Eq)^(PFOA). These results suggest enhanced sonochemical degradation rates for PFOX when the bubble interface is undersaturated. The present results are compared to previously reported sonochemical kinetics of nonvolatile surfactants
- …
