5 research outputs found

    Morphological Evolution Of Curauá Fibers Under Acid Hydrolysis

    No full text
    Cellulose whiskers were obtained by means of sulfuric acid hydrolysis of curauá fibers. Before hydrolysis, the natural fibers were treated with an alkaline solution to remove the non-cellulosic content. Fiber degradation evolution and cellulose whisker formation were analyzed by structural and morphological analysis. The original fiber structure underwent a fragmentation mechanism after being exposed for 3 min to sulfuric acid. Cellulose whiskers were lixiviated from the fiber surface after 10 min of hydrolysis, developing two scenarios: one where the whiskers became unattached from the original fiber, and the other which remained attached. The cellulose whiskers presented a needle-like geometry with an approximate diameter of 11 nm and average length of 185 nm, after 30 min of acid hydrolysis. Based on microscopic characterization, a schematic representation of the morphological evolution of the cellulose fibers submitted to acid hydrolysis is proposed. © 2012 Springer Science+Business Media B.V.19411991207Araki, J., Wada, M., Kuga, S., Okano, T., Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose (1998) Colloids Surf A, 142, pp. 75-82Ayuk, J.E., Mathew, A.P., Oksman, K., The effect of plasticizer and cellulose nanowhisker content on the dispersion and properties of cellulose acetate butyrate nanocomposites (2009) J Appl Polym Sci, 114, pp. 2723-2730Barnett, J.R., Bonham, V.A., Cellulose microfibril angle in the cell wall of wood fibres (2004) Biol Rev, 79, pp. 461-472Bellamy, L.J., (1966) The Infrared Spectra of Complex Molecules, , New York: WileyBledzki, A.K., Gassan, J., Composites reinforced with cellulose based fibres (1999) Prog Polym Sci, 24, pp. 221-274Brown Jr., R.M., Saxena, I.M., Kudlicka, K., Cellulose biosynthesis in higher plants (1996) Trends Plant Sci, 1, pp. 149-156Candanedo, S.B., Roman, M., Gray, D.G., Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions (2005) Biomacromol, 6, pp. 1048-1054Capadona, J.R., Shanmuganathan, K., Trittschuh, S., Seidel, S., Rowan, S.J., Weder, C., Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose (2009) Biomacromol, 10, pp. 712-716Corrêa, A.C., Teixeira, E.M., Pessan, L.A., Mattoso, L.H.C., Cellulose nanofibers from curaua fibers (2010) Cellulose, 17, pp. 1183-1192Dong, X.M., Revol, J.-F., Gray, D.G., Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose (1998) Cellulose, 5, pp. 19-32Durán, N., Lemes, A.P., Durán, M., Freer, J., Baeza, J., A minireview of cellulose nanocrystals and its potential integration as co-product in bioethanol production (2011) J Chil Chem Soc, 56, pp. 672-677Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Peijs, T., Review: current international research into cellulose nanofibres and nanocomposites (2010) J Mater Sci, 45, pp. 1-33Favier, V., Cavaille, J.Y., Chanzy, H., Polymer nanocomposites reinforced by cellulose whiskers (1995) Macromolecules, 28, pp. 6365-6367George, J., Ramana, K.V., Bawa, A.S., Siddaramaiah, Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites (2011) Inter J Biol Macromol, 48, pp. 50-57Goussé, C., Chanzy, H., Excoffier, G., Soubeyrand, L., Fleury, E., Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents (2002) Polymer, 43, pp. 2645-2651Habibi, Y., Lucia, L., Rojas, O., Cellulose nanocrystals: chemistry, self-assembly, and applications (2010) Chem Rev, 110, pp. 3479-3500Hon, D.N.-S., Shiraishi, N., (1990) Wood and cellulose chemistry, , Chaps 2-5, 10. Marcel Dekker Inc, New YorkIsogai, A., Usuda, M., Kato, T., Uryu, T., Atalla, R.H., High-resolution images of defects in liquid crystalline polymers in the smectic and crystalline phases (1989) Macromolecules, 22, pp. 168-173Klemm, D., Heublein, B., Fink, H.P., Bohn, A., Cellulose: fascinating biopolymer and sustainable raw material (2005) Angew Chem Int Ed Engl, 44, pp. 3358-3393Lima, M.M.S., Borsali, R., Rodlike cellulose microcrystals: structure, properties, and applications (2004) Macrom Rapid Commun, 25, pp. 771-787Lin, N., Chen, G., Huang, J., Dufresne, A., Chang, P.R., Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone (2009) J Appl Polym Sci, 113, pp. 3417-3425Pandey, J.K., Lee, C.S., Ahn, S.-H., Kim, C.-S., Chu, W.-S., Jang, D.-Y., Evaluation of morphological architecture of cellulose chains in grass during conversion from macro to nano dimensions (2009) E-Polymers, 102, pp. 1-15Pandey, J.K., Lee, C.S., Ahn, S.-H., Preparation and properties of bio-nanoreinforced composites from biodegradable polymer matrix and cellulose whiskers (2010) J Appl Polym Sci, 115, pp. 2493-2501Ranby, B.G., The cellular micelles (1952) Tappi, 35, pp. 53-58Ray, S.S., Bousmina, M., Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world (2005) Prog Mater Sci, 50, pp. 962-1079Roman, M., Winter, T., Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose (2004) Biomacromol, 5, pp. 1671-1677Samir, M.A.S.A., Alloin, F., Dufresne, A., Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field (2005) Biomacromol, 6, pp. 612-626Sanchez-Garcia, M.D., Lagaron, J.M., On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid (2010) Cellulose, 17, pp. 987-1004Speck, T., Burget, I., Plant stems: functional design and mechanics (2011) Annu Rev Mater Res, 41, pp. 169-193Spinacé, M.A.S., Lambert, C.S., Fermoselli, K.K.G., de Paoli, M.-A., Characterization of lignocellulosic curaua fibres (2009) Carbohyd Polym, 77, pp. 47-53Sturcova, A., Davies, J.R., Eichhorn, S.J., Elastic modulus and stress-transfer properties of tunicate cellulose whiskers (2005) Biomacromol, 6, pp. 1055-1061Thygesen, A., Oddershede, J., Lilhot, H., Thomsen, A.B., Stahl, K., On the determination of crystallinity and cellulose content in plant fibres (2005) Cellulose, 12, pp. 563-576Wan, N., Ding, E., Cheng, R., Preparation and liquid crystalline properties of spherical cellulose nanocrystals (2008) Langmuir, 24, pp. 5-8Yu, L., Dean, K., Li, L., Polymer blends and composites from renewable resources (2006) Prog Polym Sci, 31, pp. 576-602Zhao, H., Kwak, J.H., Zhang, Z.C., Brown, H.M., Arey, B.W., Holladay, J.E., Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis (2007) Carbohyd Polym, 68, pp. 235-24
    corecore