568 research outputs found

    Model of two-fluid reconnection

    Full text link
    A theoretical model of quasi-stationary, two-dimensional magnetic reconnection is presented in the framework of incompressible two-fluid magnetohydrodynamics (MHD). The results are compared with recent numerical simulations and experiment.Comment: 4 pages, 1 figure, accepted to Physical Review Letter

    Signatures of pressure induced superconductivity in insulating Bi2212

    Full text link
    We have performed several high pressure electrical resistance experiments on Bi1.98Sr2.06Y0.68Cu2O8, an insulating parent compound of the high-Tc Bi2212 family of copper oxide superconductors. We find a resistive anomaly, a downturn at low temperature, that onsets with applied pressure in the 20-40 kbar range. Through both resistance and magnetoresistance measurements, we identify this anomaly as a signature of induced superconductivity. Resistance to higher pressures decreases Tc, giving a maximum of 10 K. The higher pressure measurements exhibit a strong sensitivity to the hydrostaticity of the pressure environment. We make comparisons to the pressure induced superconductivity now ubiquitous in the iron arsenides.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Viriato: a Fourier-Hermite spectral code for strongly magnetised fluid-kinetic plasma dynamics

    Full text link
    We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model (KREHM) equations [Zocco & Schekochihin, Phys. Plasmas 18, 102309 (2011)] (which reduce to the standard Reduced-MHD equations in the appropriate limit) and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., Astrophys. J. Suppl. 182:310 (2009)]. Two main applications of these equations are magnetised (Alfvenic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting (Strang or Godunov) to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme composed of the combination of a total variation diminishing (TVD) third order Runge-Kutta method for the time derivative with a 7th order upwind scheme for the fluxes. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, including a detailed analysis of 2D and 3D Orszag-Tang-type decaying turbulence, both in fluid and kinetic regimes.Comment: 42 pages, 15 figures, submitted to J. Comp. Phy

    High-pressure study of non-Fermi liquid and spin-glass-like behavior in CeRhSn

    Full text link
    We present measurements of the temperature dependence of electrical resistivity of CeRhSn up to ~ 27 kbar. At low temperatures, the electrical resistivity varies linearly with temperature for all pressures, indicating non-Fermi liquid behavior. Below a temperature Tf ~ 6 K, the electrical resistivity deviates from a linear dependence. We found that the low-temperature feature centered at T = Tf shows a pressure dependence dTf/dP ~ 30 mK/kbar which is typical of canonical spin glasses. This interplay between spin-glass-like and non-Fermi liquid behavior was observed in both CeRhSn and a Ce0.9La0.1RhSn alloy.Comment: 5 pages, 3 figures, accepted for publication to Journal of Physics: Condensed Matte

    Thermodynamical Material Networks for Modeling, Planning and Control of Circular Material Flows

    Full text link
    Waste production, carbon dioxide atmospheric accumulation and dependence on finite natural resources are expressions of the unsustainability of the current industrial networks that supply fuels, energy and manufacturing products. In particular, circular manufacturing supply chains and carbon control networks are urgently needed. To model and design these and, in general, any material networks, we propose to generalize the approach used for traditional networks such as water and thermal power systems using compartmental dynamical systems thermodynamics, graph theory and the force-voltage analogy. The generalized modeling methodology is explained, then challenges and future research directions are discussed. We hope this paper inspires to use dynamical systems and control, which are typically techniques used for industrial automation, for closing material flows, which is an issue of primary concern in industrial ecology and circular economy.Comment: Perspective paper in preparatio

    Bose-Einstein Condensation of S = 1 Ni spin degrees of freedom in NiCl2-4SC(NH2)2

    Full text link
    It has recently been suggested that the organic compound NiCl2_2-4SC(NH2_2)2_2 (DTN) exhibits Bose-Einstein Condensation (BEC) of the Ni spin degrees of freedom for fields applied along the tetragonal c-axis. The Ni spins exhibit 3D XY-type antiferromagnetic order above a field-induced quantum critical point at Hc12H_{c1} \sim 2 T. The Ni spin fluid can be characterized as a system of effective bosons with a hard-core repulsive interaction in which the antiferromagnetic state corresponds to a Bose-Einstein condensate (BEC) of the phase coherent S=1S = 1 Ni spin system. We have investigated the the high-field phase diagram and the occurrence of BEC in DTN by means of specific heat and magnetocaloric effect measurements to dilution refrigerator temperatures. Our results indicate that a key prediction of BEC is satisfied; the magnetic field-temperature quantum phase transition line Hc(T)Hc1TαH_c(T)-H_{c1} \propto T^\alpha approaches a power-law at low temperatures, with an exponent α=1.47±0.06\alpha = 1.47 \pm 0.06 at the quantum critical point, consistent with the BEC theory prediction of α=1.5\alpha = 1.5.Comment: 4 pages, 4 figure

    Superconductivity and hybrid soft modes in TiSe2_2

    Get PDF
    The competition between superconductivity and other ground states of solids is one of the challenging topics in condensed matter physics. Apart from high-temperature superconductors [1,2] this interplay also plays a central role in the layered transition-metal dichalcogenides, where superconductivity is stabilized by suppressing charge-density-wave order to zero temperature by intercalation [3] or applied pressure [4-7]. 1T-TiSe2_2 forms a prime example, featuring superconducting domes on intercalation as well as under applied pressure. Here, we present high energy-resolution inelastic x-ray scattering measurements of the CDW soft phonon mode in intercalated Cux_xTiSe2_2 and pressurized 1T-TiSe2_2 along with detailed ab-initio calculations for the lattice dynamical properties and phonon-mediated superconductivity. We find that the intercalation-induced superconductivity can be explained by a solely phonon-mediated pairing mechanism, while this is not possible for the superconducting phase under pressure. We argue that a hybridization of phonon and exciton modes in the pairing mechanism is necessary to explain the full observed temperature-pressure-intercalation phase diagram. These results indicate that 1T-TiSe2_2 under pressure is close to the elusive state of the excitonic insulator
    corecore