384 research outputs found

    Structure and properties of Ti/TiB metal-matrix composite after isothermal multiaxial forging

    Get PDF
    Microstructure and mechanical properties of a Ti/TiB metal-matrix composites after multiaxial forging at 850°C to the true strain " = 5:2 were studied. The composite with 17 vol.% of TiB was produced via spark plasma sintering at 1000°

    Ultra cold neutron trap as a tool to search for dark matter with long-range radius of forces

    Full text link
    The problem of possible application of an ultracold neutron (UCN) trap as a detector of dark matter particles with long-range radius of forces has been considered. Transmission of small recoil energy in scattering is a characteristic of long-range forces. The main advantage of the ultracold neutron technique lies in possibility of detecting recoil energy as small as 10710^{-7} eV. Here are presented constraints on the interaction potential parameters: U(r)=ar1er/λU(r)=a r^{-1} e^{-r/\lambda} for dark matter particles and neutrons, as well as on the density value of long-range dark matter on the Earth. The possible mechanism of accumulation of long-range dark matter on the Earth surface is considered and the factor of density increase on the Earth surface is evaluated. The results of the first experiment on search of astronomical day variation of ultracold neutron storage time are under discussion.Comment: 17 pages, 19 figures. arXiv admin note: substantial text overlap with arXiv:1109.339

    Strong-field physics with nanospheres

    Get PDF

    Kinetics of grain refinemet in metallic materials during large strain deformation

    Get PDF
    The development of ultrafine grained microstructures in austenitic stainless steel and pure titanium subjected to large strain deformation was comparatively studied. The change in the volume fractions of newly developed ultrafine grains was used to quantify the progress in grain refinement during plastic deformatio

    New experimental limits on neutron - mirror neutron oscillations in the presence of mirror magnetic field

    Full text link
    Present probes do not exclude that the neutron (nn) oscillation into mirror neutron (nn'), a sterile state exactly degenerate in mass with the neutron, can be a very fast process, in fact faster than the neutron decay itself. This process is sensitive to the magnetic field. Namely, if the mirror magnetic field B\vec{B}' exists at the Earth, nnn-n' oscillation probability can be suppressed or resonantly amplified by the applied magnetic field B\vec{B}, depending on its strength and on the angle β\beta between B\vec{B} and B\vec{B}'. We present the results of ultra-cold neutron storage measurements aiming to check the anomalies observed in previous experiments which could be a signal for nnn-n' oscillation in the presence of mirror magnetic field B0.1B'\sim 0.1~G. Analyzing the experimental data on neutron loses, we obtain a new lower limit on nnn-n' oscillation time τnn>17\tau_{nn'} > 17 s (95 % C.L.) for any BB' between 0.08 and 0.17 G, and τnn/cosβ>27\tau_{nn'}/\sqrt{\cos\beta} > 27 s (95 % C.L.) for any BB' in the interval (0.06÷0.250.06\div0.25) G

    Mechanical behavior and microstructure evolution of a Ti-15Mo/TiB titanium–matrix composite during hot deformation

    Get PDF
    A Ti-15Mo/TiB titanium–matrix composite (TMC) was produced by spark plasma sintering at 1400◦C under a load of 40 MPa for 15 min using a Ti-14.25(wt.)%Mo-5(wt.)%TiB2 powder mixture. Microstructure evolution and mechanical behavior of the composite were studied during uniaxial compression at room temperature and in a temperature range of 500–1000◦C

    Attosecond control of electron dynamics in carbon monoxide

    Full text link
    Laser pulses with stable electric field waveforms establish the opportunity to achieve coherent control on attosecond timescales. We present experimental and theoretical results on the steering of electronic motion in a multi-electron system. A very high degree of light-waveform control over the directional emission of C+ and O+ fragments from the dissociative ionization of CO was observed. Ab initio based model calculations reveal contributions to the control related to the ionization and laser-induced population transfer between excited electronic states of CO+ during dissociation

    Sterile neutrino and dark matter

    Full text link
    We consider the equation that describes the dynamics of the sterile neutrino density in primeval plasma. The analysis of this equation results in the 5% contribution of the sterile neutrino with mixing parameters Δm142=7.3eV2\Delta m^2_{14} = 7.3\text{eV}^2 and sin22θ14=0.33\sin^2 2\theta_{14} = 0.33 to the energy density of the Universe. The considered parameters of the sterile neutrino correspond to the warm dark matter.Comment: 7 pages, 11 figure
    corecore