384 research outputs found
Structure and properties of Ti/TiB metal-matrix composite after isothermal multiaxial forging
Microstructure and mechanical properties of a Ti/TiB metal-matrix composites after multiaxial forging at 850°C to the true strain " = 5:2 were studied. The composite with 17 vol.% of TiB was produced via spark plasma sintering at 1000°
Ultra cold neutron trap as a tool to search for dark matter with long-range radius of forces
The problem of possible application of an ultracold neutron (UCN) trap as a
detector of dark matter particles with long-range radius of forces has been
considered. Transmission of small recoil energy in scattering is a
characteristic of long-range forces. The main advantage of the ultracold
neutron technique lies in possibility of detecting recoil energy as small as
eV. Here are presented constraints on the interaction potential
parameters: for dark matter particles and
neutrons, as well as on the density value of long-range dark matter on the
Earth. The possible mechanism of accumulation of long-range dark matter on the
Earth surface is considered and the factor of density increase on the Earth
surface is evaluated. The results of the first experiment on search of
astronomical day variation of ultracold neutron storage time are under
discussion.Comment: 17 pages, 19 figures. arXiv admin note: substantial text overlap with
arXiv:1109.339
Kinetics of grain refinemet in metallic materials during large strain deformation
The development of ultrafine grained microstructures in austenitic stainless steel and pure titanium subjected to large strain deformation was comparatively studied. The change in the volume fractions of newly developed ultrafine grains was used to quantify the progress in grain refinement during plastic deformatio
New experimental limits on neutron - mirror neutron oscillations in the presence of mirror magnetic field
Present probes do not exclude that the neutron () oscillation into mirror
neutron (), a sterile state exactly degenerate in mass with the neutron,
can be a very fast process, in fact faster than the neutron decay itself. This
process is sensitive to the magnetic field. Namely, if the mirror magnetic
field exists at the Earth, oscillation probability can be
suppressed or resonantly amplified by the applied magnetic field ,
depending on its strength and on the angle between and
. We present the results of ultra-cold neutron storage measurements
aiming to check the anomalies observed in previous experiments which could be a
signal for oscillation in the presence of mirror magnetic field ~G. Analyzing the experimental data on neutron loses, we obtain a new lower
limit on oscillation time s (95 % C.L.) for any
between 0.08 and 0.17 G, and s (95 % C.L.)
for any in the interval () G
Mechanical behavior and microstructure evolution of a Ti-15Mo/TiB titanium–matrix composite during hot deformation
A Ti-15Mo/TiB titanium–matrix composite (TMC) was produced by spark plasma sintering at 1400◦C under a load of 40 MPa for 15 min using a Ti-14.25(wt.)%Mo-5(wt.)%TiB2 powder mixture. Microstructure evolution and mechanical behavior of the composite were studied during uniaxial compression at room temperature and in a temperature range of 500–1000◦C
Attosecond control of electron dynamics in carbon monoxide
Laser pulses with stable electric field waveforms establish the opportunity
to achieve coherent control on attosecond timescales. We present experimental
and theoretical results on the steering of electronic motion in a
multi-electron system. A very high degree of light-waveform control over the
directional emission of C+ and O+ fragments from the dissociative ionization of
CO was observed. Ab initio based model calculations reveal contributions to the
control related to the ionization and laser-induced population transfer between
excited electronic states of CO+ during dissociation
Sterile neutrino and dark matter
We consider the equation that describes the dynamics of the sterile neutrino
density in primeval plasma. The analysis of this equation results in the 5%
contribution of the sterile neutrino with mixing parameters and to the energy density of the
Universe. The considered parameters of the sterile neutrino correspond to the
warm dark matter.Comment: 7 pages, 11 figure
- …