169 research outputs found

    The role of the Weibel instability at the reconnection jet front in relativistic pair plasma reconnection

    Full text link
    The role of the Weibel instability is investigated for the first time in the context of the large-scale magnetic reconnection problem. A late-time evolution of magnetic reconnection in relativistic pair plasmas is demonstrated by particle-in-cell (PIC) simulations. In the outflow regions, powerful reconnection jet piles up the magnetic fields and then a tangential discontinuity appears there. Further downstream, it is found that the two-dimensional extension of the relativistic Weibel instability generates electro-magnetic fields, which are comparable to the anti-parallel or piled-up fields. In a microscopic viewpoint, the instability allows plasma's multiple interactions with the discontinuity. In a macroscopic viewpoint, the instability leads to rapid expansion of the current sheet and then the reconnection jet front further propagates into the downstream. Possible application to the three-dimensional case is briefly discussed.Comment: 25 pages, 9 figures; References and typos are fixe

    Self-regulation of the reconnecting current layer in relativistic pair plasma reconnection

    Full text link
    We investigate properties of the reconnecting current layer in relativistic pair plasma reconnection. We found that the current layer self-regulates its thickness when the current layer runs out current carriers, and so relativistic reconnection retains a fast reconnection rate. Constructing a steady state Sweet-Parker model, we discuss conditions for the current sheet expansion. Based on the energy argument, we conclude that the incompressible assumption is invalid in relativistic Sweet-Parker reconnection. The guide field cases are more incompressible than the anti-parallel cases, and we find a more significant current sheet expansion.Comment: Accepted for publication in Astrophysical Journal (to appear in vol. 685

    Relativistic Particle Acceleration in a Folded Current Sheet

    Full text link
    Two-dimensional particle simulations of a relativistic Harris current sheet of pair plasmashave demonstrated that the system is unstable to the relativistic drift kink instability (RDKI) and that a new kind of acceleration process takes place in the deformed current sheet. This process contributes to the generation of non-thermal particles and contributes to the fast magnetic dissipation in the current sheet structure. The acceleration mechanism and a brief comparison with relativistic magnetic reconnection are presented.Comment: 11 preprint pages, including 3 .eps figure

    Three Dimensional Evolution of a Relativistic Current Sheet : Triggering of Magnetic Reconnection by the Guide Field

    Full text link
    The linear and non-linear evolution of a relativistic current sheet of pair (e±e^{\pm}) plasmas is investigated by three-dimensional particle-in-cell simulations. In a Harris configuration, it is obtained that the magnetic energy is fast dissipated by the relativistic drift kink instability (RDKI). However, when a current-aligned magnetic field (the so-called "guide field") is introduced, the RDKI is stabilized by the magnetic tension force and it separates into two obliquely-propagating modes, which we call the relativistic drift-kink-tearing instability (RDKTI). These two waves deform the current sheet so that they trigger relativistic magnetic reconnection at a crossover thinning point. Since relativistic reconnection produces a lot of non-thermal particles, the guide field is of critical importance to study the energetics of a relativistic current sheet.Comment: 12 pages, 4 figures; fixed typos and added a footnote [24

    Particle-in-cell simulations of shock-driven reconnection in relativistic striped winds

    Full text link
    By means of two- and three-dimensional particle-in-cell simulations, we investigate the process of driven magnetic reconnection at the termination shock of relativistic striped flows. In pulsar winds and in magnetar-powered relativistic jets, the flow consists of stripes of alternating magnetic field polarity, separated by current sheets of hot plasma. At the wind termination shock, the flow compresses and the alternating fields annihilate by driven magnetic reconnection. Irrespective of the stripe wavelength "lambda" or the wind magnetization "sigma" (in the regime sigma>>1 of magnetically-dominated flows), shock-driven reconnection transfers all the magnetic energy of alternating fields to the particles, whose average Lorentz factor increases by a factor of sigma with respect to the pre-shock value. In the limit lambda/(r_L*sigma)>>1, where r_L is the relativistic Larmor radius in the wind, the post-shock particle spectrum approaches a flat power-law tail with slope around -1.5, populated by particles accelerated by the reconnection electric field. The presence of a current-aligned "guide" magnetic field suppresses the acceleration of particles only when the guide field is stronger than the alternating component. Our findings place important constraints on the models of non-thermal radiation from Pulsar Wind Nebulae and relativistic jets.Comment: 25 pages, 14 figures, movies available at https://www.cfa.harvard.edu/~lsironi/sironi_movies.tar ; in press, special issue of Computational Science and Discovery on selected research from the 22nd International Conference on Numerical Simulation of Plasma

    New Measure of the Dissipation Region in Collisionless Magnetic Reconnection

    Full text link
    A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron's rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation

    Particle Acceleration and Magnetic Dissipation in Relativistic Current Sheet of Pair Plasmas

    Full text link
    We study linear and nonlinear development of relativistic and ultrarelativistic current sheets of pair plasmas with antiparallel magnetic fields. Two types of two-dimensional problems are investigated by particle-in-cell simulations. First, we present the development of relativistic magnetic reconnection, whose outflow speed is an order of the light speed c. It is demonstrated that particles are strongly accelerated in and around the reconnection region, and that most of magnetic energy is converted into "nonthermal" part of plasma kinetic energy. Second, we present another two-dimensional problem of a current sheet in a cross-field plane. In this case, the relativistic drift kink instability (RDKI) occurs. Particle acceleration also takes place, but the RDKI fast dissipates the magnetic energy into plasma heat. We discuss the mechanism of particle acceleration and the theory of the RDKI in detail. It is important that properties of these two processes are similar in the relativistic regime of T > mc^2, as long as we consider the kinetics. Comparison of the two processes indicates that magnetic dissipation by the RDKI is more favorable process in the relativistic current sheet. Therefore the striped pulsar wind scenario should be reconsidered by the RDKI.Comment: To appear in ApJ vol. 670; 60 pages, 27 figures; References and typos are fixe

    Current-Sheet Formation and Reconnection at a Magnetic X Line in Particle-in-Cell Simulations

    Get PDF
    The integration of kinetic effects into macroscopic numerical models is currently of great interest to the heliophysics community, particularly in the context of magnetic reconnection. Reconnection governs the large-scale energy release and topological rearrangement of magnetic fields in a wide variety of laboratory, heliophysical, and astrophysical systems. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high-resolution particle-in-cell (PIC) simulations. The initial minimum-energy, potential magnetic field is perturbed by excess thermal pressure introduced into the particle distribution function far from the X line. Subsequently, the relaxation of this added stress leads self-consistently to the development of a current sheet that reconnects for imposed stress of sufficient strength. We compare the time-dependent evolution and final state of our PIC simulations with macroscopic magnetohydrodynamic simulations assuming both uniform and localized electrical resistivities (C. R. DeVore et al., this meeting), as well as with force-free magnetic-field equilibria in which the amount of reconnection across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for understanding magnetic-reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the solar corona and terrestrial magnetotail

    Kinetic Simulations of Current-Sheet Formation and Reconnection at a Magnetic X Line

    Get PDF
    The integration of kinetic effects into macroscopic numerical models is currently of great interest to the plasma physics community, particularly in the context of magnetic reconnection. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high resolution particle-in-cell (PIC) simulations. The initial potential magnetic field is perturbed by thermal pressure introduced into the particle distribution far from the X line. The relaxation of this added stress leads to the development of a current sheet, which reconnects for imposed stress of sufficient strength. We compare the evolution and final state of our PIC simulations with magnetohydrodynamic simulations assuming both uniform and localized resistivities, and with force-free magnetic-field equilibria in which the amount of reconnect ion across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the terrestrial magnetotail and solar corona
    corecore