194 research outputs found

    Rapid Bacterial and Fungal Successional Dynamics in First Year After Chaparral Wildfire

    Get PDF
    The rise in wildfire frequency and severity across the globe has increased interest in secondary succession. However, despite the role of soil microbial communities in controlling biogeochemical cycling and their role in the regeneration of post-fire vegetation, the lack of measurements immediately post-fire and at high temporal resolution has limited understanding of microbial secondary succession. To fill this knowledge gap, we sampled soils at 17, 25, 34, 67, 95, 131, 187, 286, and 376 days after a southern California wildfire in fire-adapted chaparral shrublands. We assessed bacterial and fungal biomass with qPCR of 16S and 18S and richness and composition with Illumina MiSeq sequencing of 16S and ITS2 amplicons. Fire severely reduced bacterial biomass by 47%, bacterial richness by 46%, fungal biomass by 86%, and fungal richness by 68%. The burned bacterial and fungal communities experienced rapid succession, with 5-6 compositional turnover periods. Analogous to plants, turnover was driven by fire-loving pyrophilous microbes, many of which have been previously found in forests worldwide and changed markedly in abundance over time. Fungal secondary succession was initiated by the Basidiomycete yeast Geminibasidium, which traded off against the filamentous Ascomycetes Pyronema, Aspergillus, and Penicillium. For bacteria, the Proteobacteria Massilia dominated all year, but the Firmicute Bacillus and Proteobacteria Noviherbaspirillum increased in abundance over time. Our high-resolution temporal sampling allowed us to capture post-fire microbial secondary successional dynamics and suggest that putative tradeoffs in thermotolerance, colonization, and competition among dominant pyrophilous microbes control microbial succession with possible implications for ecosystem function

    Pathways of Resistance to Thymineless Death in Escherichia coli and the Function of UvrD

    Get PDF
    Thymineless death (TLD) is the rapid loss of viability in bacterial, yeast, and human cells starved of thymine. TLD is the mode of action of common anticancer drugs and some antibiotics. TLD in Escherichia coli is accompanied by blocked replication and chromosomal DNA loss and recent work identified activities of recombination protein RecA and the SOS DNA-damage response as causes of TLD. Here, we examine the basis of hypersensitivity to thymine deprivation (hyper-TLD) in mutants that lack the UvrD helicase, which opposes RecA action and participates in some DNA repair mechanisms, RecBCD exonuclease, which degrades double-stranded linear DNA and works with RecA in double-strand-break repair and SOS induction, and RuvABC Holliday-junction resolvase. We report that hyper-TLD in ∆uvrD cells is partly RecA dependent and cannot be attributed to accumulation of intermediates in mismatch repair or nucleotide-excision repair. These data imply that both its known role in opposing RecA and an additional as-yet-unknown function of UvrD promote TLD resistance. The hyper-TLD of ∆ruvABC cells requires RecA but not RecQ or RecJ. The hyper-TLD of recB cells requires neither RecA nor RecQ, implying that neither recombination nor SOS induction causes hyper-TLD in recB cells, and RecQ is not the sole source of double-strand ends (DSEs) during TLD, as previously proposed; models are suggested. These results define pathways by which cells resist TLD and suggest strategies for combating TLD resistance during chemotherapies

    A family-based study of gene variants and maternal folate and choline in neuroblastoma: a report from the Children’s Oncology Group

    Get PDF
    Neuroblastoma is a childhood cancer of the sympathetic nervous system with embryonic origins. Previous epidemiologic studies suggest maternal vitamin supplementation during pregnancy reduces the risk of neuroblastoma. We hypothesized offspring and maternal genetic variants in folate-related and choline-related genes are associated with neuroblastoma and modify the effects of maternal intake of folate, choline and folic acid

    Hydrogenation of Organic Matter as a Terminal Electron Sink Sustains High CO2:CH4 Production Ratios During Anaerobic Decomposition

    Get PDF
    Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 \u3e1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios

    Soil Metabolome Response to Whole-Ecosystem Warming at the Spruce and Peatland Responses Under Changing Environments Experiment

    Get PDF
    While peatlands have historically stored massive amounts of soil carbon, warming is expected to enhance decomposition, leading to a positive feedback with climate change. In this study, a unique whole-ecosystem warming experiment was conducted in northern Minnesota to warm peat profiles to 2 m deep while keeping water flow intact. After nearly 2 y, warming enhanced the degradation of soil organic matter and increased greenhouse gas production. Changes in organic matter quality with warming were accompanied by a stimulation of methane production relative to carbon dioxide. Our results revealed increased decomposition to be fueled by the availability of reactive carbon substrates produced by surface vegetation. The elevated rates of methanogenesis are likely to persist and exacerbate climate warming

    Deleterious mutation in the FYB gene is associated with congenital autosomal recessive small-platelet thrombocytopenia

    Get PDF
    BACKGROUND : The FYB gene encodes adhesion and degranulation-promoting adaptor protein (ADAP), a hematopoietic-specific protein involved in platelet activation, cell motility and proliferation, and integrin-mediated cell adhesion. No ADAP-related diseases have been described in humans, but ADAP-deficient mice have mild thrombocytopenia and increased rebleeding from tail wounds. PATIENTS AND METHODS : We studied a previously reported family of five children from two consanguineous sibships of Arab Christian descent affected with a novel autosomal recessive bleeding disorder with small-platelet thrombocytopenia. Homozygosity mapping and exome sequencing were used to identify the genetic lesion causing the disease phenotype on chromosome 5. Bone-marrow morphology and platelet function were analyzed. Platelets were characterized by scanning electron microscopy. RESULTS : We identified a homozygous deleterious nonsense mutation, c.393G>A, in FYB. A reduced percentage of mature megakaryocytes was found in the bone marrow. Patients' platelets showed increased basal expression of P-selectin and PAC-1, and reduced increments of activation markers after stimulation with ADP, as detected by flow cytometry; they also showed reduced pseudopodium formation and the presence of trapped platelets between the fibrin fibers after thrombin addition, as observed on scanning electron microscopy. CONCLUSIONS : This is the first report of a disease caused by an FYB defect in humans, manifested by remarkable small-platelet thrombocytopenia and a significant bleeding tendency. The described phenotype shows ADAP to be important for normal platelet production, morphologic changes, and function. It is suggested that mutation analysis of this gene be included in the diagnosis of inherited thrombocytopenia.Academic and Research Committee of Emek Medical Center.http://link.springer.com/journal/11239hb2016Anatom
    • …
    corecore