49 research outputs found

    Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity.

    No full text
    The sacT gene which controls the sacPA operon of Bacillus subtilis encodes a polypeptide homologous to the B. subtilis SacY and the Escherichia coli BglG antiterminators. Expression of the sacT gene is shown to be constitutive. The DNA sequence upstream from sacP contains a palindromic sequence which functions as a transcriptional terminator. We have previously proposed that SacT acts as a transcriptional antiterminator, allowing transcription of the sacPA operon. In strains containing mutations inactivating ptsH or ptsI, the expression of sacPA and sacB is constitutive. In this work, we show that this constitutivity is due to a fully active SacY antiterminator. In the wild-type sacT+ strain or in the sacT30 mutant, SacT requires both enzyme I and HPr of the phosphotransferase system (PTS) for antitermination. It appears that the PTS exerts different effects on the sacB gene and the sacPA operon. The general proteins of the PTS are not required for the activity of SacY while they are necessary for SacT activity

    Cryogenic Ion Spectroscopy of the Green Fluorescent Protein Chromophore in Vacuo

    Get PDF
    We present the spectrum of the S1 ← S0 transition of an anionic model for the chromophore of the green fluorescent protein in vacuo at cryogenic temperatures, showing previously unresolved vibrational features, and resolving the band origin at 20850 cm-1 (479.6 nm) with unprecedented accuracy. The vibrational spectrum establishes that the molecule is in the Z isomer at low temperature. At increased temperature, theS1 ← S0 band shifts to the red, which we tentatively attribute to emergent population of the E isomer

    Probing the Microsolvation Environment of the Green Fluorescent Protein Chromophore In Vacuo

    Get PDF
    We present vibrational and electronic photodissociation spectra of a model chromophore of the green fluorescent protein in complexes with up to two water molecules, prepared in a cryogenic ion trap at 160–180 K. We find the band origin of the singly hydrated chromophore at 20 985 cm–1 (476.5 nm) and observe partially resolved vibrational signatures. While a single water molecule induces only a small shift of the S1 electronic band of the chromophore, without significant change of the Franck–Condon envelope, the spectrum of the dihydrate shows significant broadening and a greater blue shift of the band edge. Comparison of the vibrational spectra with predicted infrared spectra from density functional theory indicates that water molecules can interact with the oxygen atom on the phenolate group or on the imidazole moiety, respectively
    corecore