1,472 research outputs found

    Comment on "Are periodic solar wind number density structures formed in the solar corona?" by N. M. Viall et al., 2009, Geophys. Res. Lett., 36, L23102, doi:10.1029/2009GL041191

    Full text link
    Location of formation of periodic solar wind number density structures is discussed. Observation of proton and alpha anticorrelation in these structures [Viall et al., 2009] indicates that taking into account that bulk velocity of aplha-particles is higher than that of proton the place of formation for these structures should be located at distance less 0.002 AU from place of observation.Comment: 6 pages, submitted in GR

    Ultraviolet-C decontamination of hand-held tablet devices in the healthcare environment using the Codonics D6000â„¢ disinfection system

    Get PDF
    Mobile phones and tablet computers may be contaminated with micro-organisms and become a potential reservoir for cross-transmission of pathogens between healthcare workers and patients. There is no generally accepted guidance on how to reduce contamination on mobile devices in healthcare settings. Our aim was to determine the efficacy of the Codonics D6000™ UV-C disinfection device. Daily disinfection reduced contamination on screens and on protective cases (test) significantly, but not all cases (control) could be decontaminated. The median aerobic colony count on the control and the test cases was 52 cfu/25 cm2 (interquartile range: 33-89) and 22 cfu/25 cm2 (10.5-41), respectively, before disinfection

    A human colonic crypt culture system to study regulation of stem cell-driven tissue renewal and physiological function

    Get PDF
    The intestinal epithelium is one of the most rapidly renewing tissues in the human body and fulfils vital physiological roles such as barrier function and transport of nutrients and fluid. Investigation of gut epithelial physiology in health and disease has been hampered by the lack of ex vivo models of the native human intestinal epithelium. Recently, remarkable progress has been made in defining intestinal stem cells and in generating intestinal organoid cultures. In parallel, we have developed a 3D culture system of the native human colonic epithelium that recapitulates the topological hierarchy of stem cell-driven tissue renewal and permits the physiological study of native polarized epithelial cells. Here we describe methods to establish 3D cultures of intact human colonic crypts and conduct real-time imaging of intestinal tissue renewal, cellular signalling, and physiological function, in conjunction with manipulation of gene expression by lentiviral or adenoviral transduction. Visualization of mRNA- and protein-expression patterns in cultured human colonic crypts, and cross-validation with crypts derived from fixed mucosal biopsies, is also described. Alongside studies using intestinal organoids, the near-native human colonic crypt culture model will help to bridge the gap that exists between investigation of colon cancer cell lines and/or animal (tissue) studies, and progression to clinical trials. To this end, the near native human colonic crypt model provides a platform to aid the development of novel strategies for the prevention of inflammatory bowel disease and cancer

    Large Silicon Abundance in Photodissociation Regions

    Full text link
    We have made one-dimensional raster-scan observations of the rho Oph and sigma Sco star-forming regions with two spectrometers (SWS and LWS) on board the ISO. In the rho Oph region, [SiII] 35um, [OI] 63um, 146um, [CII] 158um, and the H2 pure rotational transition lines S(0) to S(3) are detected, and the PDR properties are derived as the radiation field scaled by the solar neighborhood value G_0~30-500, the gas density n~250--2500 /cc, and the surface temperature T~100-400 K. The ratio of [SiII] 35um to [OI] 146um indicates that silicon of 10--20% of the solar abundance must be in the gaseous form in the photodissociation region (PDR), suggesting that efficient dust destruction is undergoing even in the PDR and that part of silicon atoms may be contained in volatile forms in dust grains. The [OI] 63um and [CII] 158um emissions are too weak relative to [OI] 146um to be accounted for by standard PDR models. We propose a simple model, in which overlapping PDR clouds along the line of sight absorb the [OI] 63um and [CII] 158um emissions, and show that the proposed model reproduces the observed line intensities fairly well. In the sigma Sco region, we have detected 3 fine-structure lines, [OI] 63um, [NII] 122um, and [CII] 158um, and derived that 30-80% of the [CII] emission comes from the ionized gas. The upper limit of the [SiII] 35um is compatible with the solar abundance relative to nitrogen and no useful constraint on the gaseous Si is obtained for the sigma Sco region.Comment: 25 pages with 7 figures, accepted in Astrophysical Journa

    Modelling environmental drivers of black band disease outbreaks in populations of foliose corals in the genus Montipora

    Get PDF
    Seawater temperature anomalies associated with warming climate have been linked to increases in coral disease outbreaks that have contributed to coral reef declines globally. However, little is known about how seasonal scale variations in environmental factors influence disease dynamics at the level of individual coral colonies. In this study, we applied a multi-state Markov model (MSM) to investigate the dynamics of black band disease (BBD) developing from apparently healthy corals and/or a precursor-stage, termed `cyanobacterial patches' (CP), in relation to seasonal variation in light and seawater temperature at two reef sites around Pelorus Island in the central sector of the Great Barrier Reef. The model predicted that the proportion of colonies transitioning from BBD to Healthy states within three months was appro)dmately 57%, but 5.6% of BBD cases resulted in whole colony mortality. According to our modelling, healthy coral colonies were more susceptible to BBD during summer months when light levels were at their maxima and seawater temperatures were either rising 0r at their maxima. In contrast, CP mostly occurred during spring, when both light and seawater temperatures were rising. This suggests that environmental drivers for healthy coral colonies transitioning into a Cl' state are different from those driving transitions into BBD. Our model predicts that (1) the transition from healthy to CP state is best explained by increasing light, (2) the transition between Healthy to BBD occurs more frequently from early to late summer, (3) 20% of CP infected corals developed BBD, although light and temperature appeared to have limited impact on this state transition, and (4) the number of transitions from Healthy to BBD differed significantly between the two study sites, potentially reflecting differences in localised wave action regimes

    Comparison of Two Whole-Room UV-Irradiation Systems for Enhanced Disinfection of Patient Rooms Contaminated with MRSA, carbapenemase-producing Klebsiella pneumoniae and Clostridium difficile spores

    Get PDF
    BACKGROUND: Ultraviolet light decontamination systems are being used increasingly to supplement terminal disinfection of patient rooms. However efficacy may not be consistent in the presence of soil particularly against Clostridium difficile spores. AIM: To demonstrate in-use efficacy of two whole-room UV decontamination systems against three hospital pathogens with and without soil. METHODS: For each system, six patient rooms were decontaminated with UV-irradiation (enhanced-disinfection) following manual terminal cleaning. Total aerobic colony counts of surface contamination were determined by spot-sampling 15 environmental sites before and after terminal disinfection and after UV-irradiation. Efficacy against biological indicator coupons (stainless-steel discs) was performed for each system using test bacteria (10(6) cfu EMRSA-15 variant A, carbapenemase-producing K. pneumoniae) or spores (10(5) cfu C. difficile 027), incorporating low soiling (0.03% bovine serum albumin [BSA]), heavy soiling (10%BSA) or synthetic faeces (C. difficile only) placed at five locations in the room. FINDINGS: UV disinfection eliminated contamination after terminal cleaning in 8/14 (57%) and 11/14 (79%) sites. Both systems demonstrated 4 to 5 log10 reductions in MRSA and Klebsiella pneumoniae at low soiling. Lower and more variable log10 reductions were achieved when heavy soiling present. Between 0.1 and 4.8 log10 reductions in Clostridium difficile spores were achieved with low but not heavy soil challenge. CONCLUSION: Terminal disinfection should be performed on all surfaces prior to UV decontamination. In-house validation studies should be considered to ensure optimal positioning in each room layout and sufficient cycle duration to eliminate target pathogens
    • …
    corecore