523 research outputs found

    AC loss of ripple current in superconducting DC power transmission cable

    Get PDF
    As a method of largely reducing the transmission loss in the electric power grid, superconducting direct current (DC) power transmission cable has been investigated. Using superconducting DC power transmission cables, large amounts of current and energy can be transferred compared to conventional copper cables. In this case, an alternating current (AC) is converted to DC and superposed AC which is known as ripple current, and the energy loss by the ripple current is generated. Therefore it is desired to estimate the energy loss density for the case of DC current and superposed AC current for a design of DC transmission cable system. In this study, the hysteresis loss for DC current of 2 kA rectified from 60 Hz alternating current is calculated using the Bean model, and coupling loss was also estimated. The diameter of the cable was 40 mm. The ripple currents generated by multi-pulse rectifiers, 6-pulse, 12-pulse, and 24-pulse were considered. It is found that the total AC loss including the hysteresis loss and the coupling loss is considerably smaller than the supposed heat loss of 0.5 W/m which is obtained with a newly developed cable.26th International Symposium on Superconductivity (ISS 2013), November 18-20, 2013, Tokyo, Japa

    Evaluation of trapped magnetic field properties in superconducting MgB2 bulk magnets by finite element method 

    Get PDF
    The trapped magnetic field properties in superconducting MgB2 bulk magnets with various kinds of shape such as a disk, a ring and a pair of disks were calculated by the finite element method (FEM). For simplicity, field cool magnetization was replaced by a simple magnetization process at constant temperature to obtain equivalent distribution of magnetic field, and the thermal equation in FEM was omitted. It was confirmed that the result of FEM agreed well with the result by analytical method in infinite long cylinder. We compared the trapped magnetic field property between FEM result and experimental result in reference in order to research the simple evaluation method of the trapped magnetic field of MgB2 bulk magnet. It was found that the result of FEM agreed with the experimental result and it can explain the distribution of trapped magnetic field of superconducting MgB2 bulk magnet. From these results, it was found that it was possible to be calculated in various kinds of shape with using simple evaluation by FEM. Therefore, the optimization of the maximum trapped magnetic field in superconducting MgB2 bulk magnet can be discussed.Proceedings of the 27th International Symposium on Superconductivity (ISS 2014) November 25-27, 2014, Tokyo, Japa

    Coherent control for the spherical symmetric box potential in short and intensive XUV laser fields

    Full text link
    Coherent control calculations are presented for a spherically symmetric box potential for non-resonant two photon transition probabilities. With the help of a genetic algorithm (GA) the population of the excited states are maximized and minimized. The external driving field is a superposition of three intensive extreme ultraviolet (XUV) linearly polarized laser pulses with different frequencies in the femtosecond duration range. We solved the quantum mechanical problem within the dipole approximation. Our investigation clearly shows that the dynamics of the electron current has a strong correlation with the optimized and neutralizing pulse shape.Comment: 11 Pages 3 Figure

    Stability of closed gaps for the alternating Kronig-Penney Hamiltonian

    Get PDF
    We consider the Kronig-Penney model for a quantum crystal with equispaced periodic delta-interactions of alternating strength. For this model all spectral gaps at the centre of the Brillouin zone are known to vanish, although so far this noticeable property has only been proved through a very delicate analysis of the discriminant of the corresponding ODE and the associated monodromy matrix. We provide a new, alternative proof by showing that this model can be approximated, in the norm resolvent sense, by a model of regular periodic interactions with finite range for which all gaps at the centre of the Brillouin zone are still vanishing. In particular this shows that the vanishing gap property is stable in the sense that it is present also for the "physical" approximants and is not only a feature of the idealised model of zero-range interactions. \ua9 2015, Springer Basel

    FGF10/FGFR2 signal induces cell migration and invasion in pancreatic cancer

    Get PDF
    Pancreatic cancer has one of the highest mortalities among all malignancies and there is an urgent need for new therapy. This might be achieved by resolving the detailed biological mechanism, and in this study we examined how pancreatic cancer cells develop aggressive properties by focusing on signalling through the fibroblast growth factor (FGF)10 and FGF receptor (FGFR)2, which play important roles in pancreatic organogenesis. Immunostaining of pancreatic cancer tissues showed that FGFR2 was expressed in cancer cells, whereas FGF10 was expressed in stromal cells surrounding the cancer cells. Patients with high FGFR2 expression in cancer cells had a shorter survival time compared to those with low FGFR2 expression. Fibroblast growth factor 10 induced cell migration and invasion of CFPAC-1 and AsPC-1 pancreatic cancer cells through interaction with FGFR2-IIIb, a specific isoform of FGFR2. Fibroblast growth factor 10 also induced expression of mRNA for membrane type 1-matrix metalloproteinase (MT1-MMP) and transforming growth factor (TGF)-β1, and increased secretion of TGF-β1 protein from these cell lines. These data indicate that stromal FGF10 induces migration and invasion in pancreatic cancer cells through interaction with FGFR2, resulting in a poor prognosis. This suggests that FGF10/FGFR2 signalling is a promising target for new molecular therapy against pancreatic cancer

    Applying refinement to the use of mice and rats in rheumatoid arthritis research

    Get PDF
    Rheumatoid arthritis (RA) is a painful, chronic disorder and there is currently an unmet need for effective therapies that will benefit a wide range of patients. The research and development process for therapies and treatments currently involves in vivo studies, which have the potential to cause discomfort, pain or distress. This Working Group report focuses on identifying causes of suffering within commonly used mouse and rat ‘models’ of RA, describing practical refinements to help reduce suffering and improve welfare without compromising the scientific objectives. The report also discusses other, relevant topics including identifying and minimising sources of variation within in vivo RA studies, the potential to provide pain relief including analgesia, welfare assessment, humane endpoints, reporting standards and the potential to replace animals in RA research
    • …
    corecore