175 research outputs found

    Chronic Health Conditions as a Risk Factor for Falls among the Community-Dwelling US Older Adults: A Zero-Inflated Regression Modeling Approach

    Get PDF
    Falls are an important health concern among older adults due to age-related changes in the body. Having a medical history of chronic health condition may pose even higher risk of falling. Only few studies have assessed a number of chronic health conditions as risk factor for falls over a large nationally representative sample of US older adults. In this study, Behavioral Risk Factor Surveillance System (BRFSS) 2014 participants aged 65 years and older (n = 159,336) were evaluated. It was found that 29.7% (n = 44,550) of the sample experienced at least one fall and 16.3% (n = 20,444) experienced more than one fall in the past 12 months. According to the study findings, having a medical history of stroke, CKD, arthritis, depression, and diabetes independently predict the risk of first-time falling as well as the risk of recurrent falling in older adult population while controlling for other factors. On the other hand, having a medical history of the heart attack, angina, asthma, and COPD did not predict the risk of first-time falling, but did predict the risk of recurrent falling after experiencing the first fall in this population

    Chandra view of Kes 79: a nearly isothermal SNR with rich spatial structure

    Full text link
    A 30 ks \chandra ACIS-I observation of Kes 79 reveals rich spatial structures, including many filaments, three partial shells, a loop and a ``protrusion''. Most of them have corresponding radio features. Regardless of the different results from two non-equilibrium ionization (NEI) codes, temperatures of different parts of the remnant are all around 0.7 keV, which is surprisingly constant for a remnant with such rich structure. If thermal conduction is responsible for smoothing the temperature gradient, a lower limit on the thermal conductivity of \sim 1/10 of the Spitzer value can be derived. Thus, thermal conduction may play an important role in the evolution of at least some SNRs. No spectral signature of the ejecta is found, which suggests the ejecta material has been well mixed with the ambient medium. From the morphology and the spectral properties, we suggest the bright inner shell is a wind-driven shell (WDS) overtaken by the blast wave (the outer shell) and estimate the age of the remnant to be \sim 6 kyr for the assumed dynamics. Projection is also required to explain the complicated morphology of Kes 79.Comment: 12 pages, 6 figures (3 in color), ApJ, in press, April 20, 200

    Metal-to-insulator transition in anatase TiO2 thin films induced by growth rate modulation

    Full text link
    We demonstrate control of the carrier density of single phase anatase TiO2 thin films by nearly two orders of magnitude by modulating the growth kinetics during pulsed laser deposition, under fixed thermodynamic conditions. The resistivity and the intensity of the photoluminescence spectra of these TiO2 samples, both of which correlate with the number of oxygen vacancies, are shown to depend strongly on the growth rate. A quantitative model is used to explain the carrier density changes.Comment: 13 pages 3 figure

    Sub-Cycle Optical Response Caused by Dressed State with Phase-Locked Wavefunctions

    Get PDF
    The coherent interaction of light with matter imprints the phase information of the light field on the wavefunction of the photon-dressed electronic state. Driving electric field, together with a stable phase that is associated with the optical probe pulses, enables the role of the dressed state in the optical response to be investigated. We observed optical absorption strengths modulated on a sub-cycle timescale in a GaAs quantum well in the presence of a multi-cycle terahertz driving pulse using a near-infrared probe pulse. The measurements were in good agreement with the analytical formula that accounts for the optical susceptibilities caused by the dressed state of excitons, which indicates that the output probe intensity was coherently reshaped by the excitonic sideband emissions

    Gain in a quantum wire laser of high uniformity

    Full text link
    A multi-quantum wire laser operating in the 1-D ground state has been achieved in a very high uniformity structure that shows free exciton emission with unprecedented narrow width and low lasing threshold. Under optical pumping the spontaneous emission evolves from a sharp free exciton peak to a red-shifted broad band. The lasing photon energy occurs about 5 meV below the free exciton. The observed shift excludes free excitons in lasing and our results show that Coulomb interactions in the 1-D electron-hole system shift the spontaneous emission and play significant roles in laser gain.Comment: 4 pages, 4 figures, prepared by RevTe

    The X-ray CCD camera of the MAXI Experiment on the ISS/JEM

    Full text link
    MAXI, Monitor of All-sky X-ray Image, is the X-ray observatory on the Japanese experimental module (JEM) Exposed Facility (EF) on the International Space Station (ISS). MAXI is a slit scanning camera which consists of two kinds of X-ray detectors: one is a one-dimensional position-sensitive proportional counter with a total area of 5000cm2\sim 5000 cm^2, the Gas Slit Camera (GSC), and the other is an X-ray CCD array with a total area 200cm2\sim 200 cm^2, the Solid-state Slit Camera (SSC). The GSC subtends a field of view with an angular dimension of 1×180^\circ\times 180^\circ while the SSC subtends a field of view with an angular dimension of 1^\circ times a little less than 180^\circ. In the course of one station orbit, MAXI can scan almost the entire sky with a precision of 1^\circ and with an X-ray energy range of 0.5-30 keV. We have developed the engineering model of CCD chips and the analogue electronics for the SSC. The energy resolution of EM CCD for Mn Kα\alpha has a full-width at half maximum of \simeq 182 eV. Readout noise is \simeq 11 e^- rms.Comment: 10 pages, 4 figures Accepted for Nuclear Instruments and Method in Physics Researc

    Scanning tunneling microscopy and spectroscopy at low temperatures of the (110) surface of Te doped GaAs single crystals

    Full text link
    We have performed voltage dependent imaging and spatially resolved spectroscopy on the (110) surface of Te doped GaAs single crystals with a low temperature scanning tunneling microscope (STM). A large fraction of the observed defects are identified as Te dopant atoms which can be observed down to the fifth subsurface layer. For negative sample voltages, the dopant atoms are surrounded by Friedel charge density oscillations. Spatially resolved spectroscopy above the dopant atoms and above defect free areas of the GaAs (110) surface reveals the presence of conductance peaks inside the semiconductor band gap. The appearance of the peaks can be linked to charges residing on states which are localized within the tunnel junction area. We show that these localized states can be present on the doped GaAs surface as well as at the STM tip apex.Comment: 8 pages, 8 figures, accepted for publication in PR
    corecore