16 research outputs found

    An optimized direct control method applied to multilevel inverter for microgrid power quality enhancement

    Get PDF
    Multifunctional DGs and active power filters have become a mature technology in recent years, so in this paper, an optimized current control method for a multilevel converter is proposed. The control method will overcome harmonic current tracking inefficiency of previous control methods in online harmonic compensation applications in microgrids. This control method is applicable for grid-connected inverter-based multi-functional Distributed Generation (DG) converters. It could also be used in active power filter applications which need high-speed reference tracking ability. Having the advantages of current control methods like hysteresis band control, proportional-integral (PI) and proportional-resonant (PR) control methods, the proposed approach overcomes disadvantages of these methods especially in harmonic reference tracking as it will be discussed in detail. The main advantages of this method are the simplicity of implementation, calculation delay compensation and its fast response to changes. The power electronic circuit, operating principles, two-horizon predicted switching states of multilevel inverter, experimental results and applications of this control method will be discussed in the paper. For studying the feasibility of the control method, an experimental prototype is tested in a microgrid platform

    Distributed power quality improvement in residential microgrids

    Get PDF
    The importance of power quality issue on micro grids and also the changing nature of power system distortions will lead the future power systems to use distributed power quality improvement (DPQI) devices. One possible choice of these DPQIs are multifunctional DGs that could compensate some harmonics in the location of generation and prevent the harmonics to enter main power grid. In this paper a control method based on virtual harmonic impedance is presented for these multifunctional DGs and the effect of the location of these DGs on compensation procedure is studied with simulating the different situations. Finally a comparison is presented between different states of using DGs as PQI devices. To verify the feasibility of the control method a comparison is done between the presented method results and IEEE power quality standard limits

    An overview of power quality enhancement techniques applied to distributed generation in electrical distribution networks

    Get PDF
    It is obvious that power quality is an important characteristic of today's distribution power systems as loads become more sensitive on the other hand nonlinear loads are increasing in the electrical distribution system. Considering the distributed nature of harmonic loads, the need for distributed power quality improvement (PQI) is inevitable. From years ago, researchers have been working on various kinds of filters and devices to enhance the overall power quality of power system, but today the nature of distribution system has been changed and power electronic based DGs play an important role in distribution grids. In this paper, a thorough survey is done on power quality enhancement devices with emphasis on ancillary services of multi-functional DGs. A literature review is also done on microgrids concept, testbeds and related control methods. Although there were some applications of DGs for PQI improvement these applications were not defined multi-functional DGs. Various control methods are studied and categorized regarding different viewpoints in the literature. Finally, a couple of thorough comparisons are done between the available techniques considering the nature, capabilities, advantages and implementation costs

    A practical approach to achieving agility : a theory of constraints perspective

    Full text link
    This article documents an action research (AR) project aimed at identifying the practical steps needed to become an agile manufacturer through a combination of the theory of constraints (TOC) and resource- based view (RBV) approaches in a small to medium enterprise (SME) in the Australian manufacturing sector. To date, lean production has been highlighted as a possible catalyst for creating an agile manufacturer, despite the evidence suggesting that lean manufacturing lacks the responsiveness and adaptability to effectively handle a rapidly changing market place and only works well in a stable environment. A more flexible system of production is required to fully encompass the agile characteristics needed to attain a competitive advantage. This research provides empirical evidence that the TOC perspective can be used as a practical approach for becoming an agile manufacturer. The study provides a workable approach for small firms to achieve ‘Agility’ in practice

    Multi-objective model predictive control for microgrid applications

    No full text
    Integration of microgrids may introduce significant power quality challenges to the power distribution networks that may necessitate additional enforcement such as installing new Power Quality Improvement Devices (PQID), which is costly and not always possible option. This paper proposes a control approach that enables the existing power electronics devices within the microgrid to perform multiple functions to address the resultant power quality problems. The proposed method introduces flexibility in harmonic and fundamental power sharing and controlling switching frequency through an improved cost function. Grid connected operation-mode, harmonic compensation capabilities as well as improved dynamic response of controller to fast reference changes have been studied and experimentally verified on a microgrid prototype. Finally, the experimental results of the proposed control method are compared with the results from most recent relevant research activities in the field, evidencing its superiority as compared to the existing control methods presented in the literature

    Multi-objective model predictive control for microgrid applications

    No full text
    Integration of microgrids may introduce significant power quality challenges to the power distribution networks that may necessitate additional enforcement such as installing new Power Quality Improvement Devices (PQID), which is costly and not always possible option. This paper proposes a control approach that enables the existing power electronics devices within the microgrid to perform multiple functions to address the resultant power quality problems. The proposed method introduces flexibility in harmonic and fundamental power sharing and controlling switching frequency through an improved cost function. Grid connected operation-mode, harmonic compensation capabilities as well as improved dynamic response of controller to fast reference changes have been studied and experimentally verified on a microgrid prototype. Finally, the experimental results of the proposed control method are compared with the results from most recent relevant research activities in the field, evidencing its superiority as compared to the existing control methods presented in the literature
    corecore