25 research outputs found

    Computer Aided Distributed Post-Stroke Rehabilitation Environment

    No full text
    In this paper we present the results of a two-year study aimed at developing a full-fledged computer environment supporting post-stroke rehabilitation. The system was designed by a team of computer scientists, psychologists and physiotherapists. It adopts a holistic approach to rehabilitation. In order to extend the rehabilitation process, the applied methods include a remote rehabilitation stage which can be carried out of at the patient’s home. The paper presents a distributed system architecture as well as results achieved by patients prior to and following a three-month therapy based on the presented system

    Computer Aided Distributed Post-Stroke Rehabilitation Environment

    No full text
    In this paper we present the results of a two-year study aimed at developing a full-fledged computer environment supporting post-stroke rehabilitation. The system was designed by a team of computer scientists, psychologists and physiotherapists. It adopts a holistic approach to rehabilitation. In order to extend the rehabilitation process, the applied methods include a remote rehabilitation stage which can be carried out of at the patient’s home. The paper presents a distributed system architecture as well as results achieved by patients prior to and following a three-month therapy based on the presented system

    Sorption and magnetic properties of oxalato-basedt trimetallic open framework stabilized by charge-assisted hydrogen bonds

    Get PDF
    We report a new structure of {[Co(bpy)(2)(ox)][{Cu(2)(bpy)(2)(ox)}Fe(ox)(3)]}(n)·8.5nH(2)O NCU-1 presenting a rare ladder topology among oxalate-based coordination polymers with anionic chains composed of alternately arranged [Cu(2)(bpy)(2)(ox)](2+) and [Fe(ox)(3)](3−) moieties. Along the a axis, they are separated by Co(III) units to give porous material with voids of 963.7 Å(3) (16.9% of cell volume). The stability of this structure is assured by a network of stacking interactions and charge-assisted C-H…O hydrogen bonds formed between adjacent chains, adjacent cobalt(III) units, and alternately arranged cobalt(III) and chain motifs. The soaking experiment with acetonitrile and bromobenzene showed that water molecules (8.5 water molecules dispersed over 15 positions) are bonded tightly, despite partial occupancy. Water adsorption experiments are described by a D’arcy and Watt model being the sum of Langmuir and Dubinin–Serpinski isotherms. The amount of primary adsorption sites calculated from this model is equal 8.2 mol H(2)O/mol, being very close to the value obtained from the XRD experiments and indicates that water was adsorbed mainly on the primary sites. The antiferromagnetic properties could be only approximately described with the simple Cu(II)-ox-Cu(II) dimer using H = −J·S(1)·S(2), thus, considering non-trivial topology of the whole Cu-Fe chain, we developed our own general approach, based on the semiclassical model (SC) and molecular field (MF) model, to describe precisely the magnetic superexchange interactions in NCU-1. We established that Cu(II)-Cu(II) coupling dominates over multiple Cu(II)-Fe(III) interactions, with J(CuCu) = −275(29) and J(CuFe) = −3.8(1.6) cm(−1) and discussed the obtained values against the literature data

    Interactive cloud data farming environment for military mission planning support

    No full text
    In a modern globalised world, military and peace keeping forces often face situations which require very subtle and well planned operations taking into account cultural and social aspects of a given region and its population as well as dynamic psychological awareness related to recent events which can have impact on the attitude of the civilians. The goal of the EUSAS project is to develop a prototype of a system enabling mission planning support and training capabilities for soldiers and police forces dealing with asymmetric threat situations, such as crowd control in urban territory. In this paper, we discuss the data-farming infrastructure developed for this project, allowing generation of large amount of data from agent based simulations for further analysis allowing soldier training and evaluation of possible outcomes of different rules of engagement

    Structural Diversity, XAS and Magnetism of Copper(II)-Nickel(II) Heterometallic Complexes Based on the [Ni(NCS)<sub>6</sub>]<sup>4−</sup> Unit

    Get PDF
    The new heterometallic compounds, [{Cu(pn)2}2Ni(NCS)6]n·2nH2O (1), [{CuII(trien)}2Ni(NCS)6CuI(NCS)]n (2) and [Cu(tren)(NCS)]4[Ni(NCS)6] (3) (pn = 1,2-diaminopropane, trien = triethylenetetramine and tren = tris(2-aminoethylo)amine), were obtained and characterized by X-ray analysis, IR spectra, XAS and magnetic measurements. Compounds 1, 2 and 3 show the structural diversity of 2D, 1D and 0D compounds, respectively. Depending on the polyamine used, different coordination polyhedron for Cu(II) was found, i.e., distorted octahedral (1), square pyramidal (2) and trigonal bipyramidal (3), whereas coordination polyhedron for nickel(II) was always octahedral. It provides an approach for tailoring magnetic properties by proper selection of auxiliary ligands determining the topology. In 1, thiocyanate ligands form bridges between the copper and nickel ions, creating 2D layers of sql topology with weak ferromagnetic interactions. Compound 2 is a mixed-valence copper coordination polymer and shows the rare ladder topology of 1D chains decorated with [CuII(tren)]2+ antennas as the side chains attached to nickel(II). The ladder rails are formed by alternately arranged Ni(II) and Cu(I) ions connected by N2 thiocyanate anions and rungs made by N3 thiocyanate. For the Cu(I) ions, the tetrahedral thiocyanate environment mixed N/S donor atoms was found, confirming significant coordination spheres rearrangement occurring at the copper precursor together with the reduction in some Cu(II) to Cu(I). Such topology enables significant simplification of the magnetic properties modeling by assuming magnetic coupling inside {NiIICuII2} trinuclear units separated by diamagnetic [Cu(NCS)(SCN)3]3− linkers. Compound 3 shows three discrete mononuclear units connected by N-H…N and N-H…S hydrogen bonds. Analysis of XAS proves that the average ligand character and the covalency of the unoccupied metal d-based orbitals for copper(II) and nickel(II) increase in the following order: 1 → 2 → 3. In 1 and 2, a weak ferromagnetic coupling between copper(II) and nickel(II) was found, but in 2, additional and stronger antiferromagnetic interaction between copper(II) ions prevailed. Compound 3, as an ionic pair, shows, as expected, a spin-only magnetic moment

    Sorption and Magnetic Properties of Oxalato Based Trimetallic Open Framework Stabilized by Charge Assisted Hydrogen Bonds

    Get PDF
    We report a new structure of {[Co(bpy)(2)(ox)][{Cu(2)(bpy)(2)(ox)}Fe(ox)(3)]}(n)·8.5nH(2)O NCU-1 presenting a rare ladder topology among oxalate-based coordination polymers with anionic chains composed of alternately arranged [Cu(2)(bpy)(2)(ox)](2+) and [Fe(ox)(3)](3−) moieties. Along the a axis, they are separated by Co(III) units to give porous material with voids of 963.7 Å(3) (16.9% of cell volume). The stability of this structure is assured by a network of stacking interactions and charge-assisted C-H…O hydrogen bonds formed between adjacent chains, adjacent cobalt(III) units, and alternately arranged cobalt(III) and chain motifs. The soaking experiment with acetonitrile and bromobenzene showed that water molecules (8.5 water molecules dispersed over 15 positions) are bonded tightly, despite partial occupancy. Water adsorption experiments are described by a D’arcy and Watt model being the sum of Langmuir and Dubinin–Serpinski isotherms. The amount of primary adsorption sites calculated from this model is equal 8.2 mol H(2)O/mol, being very close to the value obtained from the XRD experiments and indicates that water was adsorbed mainly on the primary sites. The antiferromagnetic properties could be only approximately described with the simple Cu(II)-ox-Cu(II) dimer using H = −J·S(1)·S(2), thus, considering non-trivial topology of the whole Cu-Fe chain, we developed our own general approach, based on the semiclassical model (SC) and molecular field (MF) model, to describe precisely the magnetic superexchange interactions in NCU-1. We established that Cu(II)-Cu(II) coupling dominates over multiple Cu(II)-Fe(III) interactions, with J(CuCu) = −275(29) and J(CuFe) = −3.8(1.6) cm(−1) and discussed the obtained values against the literature data
    corecore