1,204 research outputs found

    Fermi distribution of semicalssical non-eqilibrium Fermi states

    Full text link
    When a classical device suddenly perturbs a degenerate Fermi gas a semiclassical non-equilibrium Fermi state arises. Semiclassical Fermi states are characterized by a Fermi energy or Fermi momentum that slowly depends on space or/and time. We show that the Fermi distribution of a semiclassical Fermi state has a universal nature. It is described by Airy functions regardless of the details of the perturbation. In this letter we also give a general discussion of coherent Fermi states

    Small Orbital Debris Mitigation Mission Architecture

    Get PDF
    Small orbital debris in LEO (1-10 cm in size) presents a clear and present danger to operational LEO spacecraft. This debris field has dramatically increased (nearly doubled) in recent years following the Chinese ASAT Test in 2007 and the Iridium/Cosmos collision in 2009. Estimates of the number of small debris have grown to 500,000 objects after these two events; previously the population was 300,000 objects. These small, untracked debris objects (appproximately 500,000) outnumber the larger and tracked objects (appproximately 20,000) by a factor 25 to 1. Therefore, the risk of the small untracked debris objects to operational spacecraft is much greater than the risk posed by the larger and tracked LEO debris objects. A recent study by The Aerospace Corporation found that the debris environment will increase the costs of maintaining a constellation of government satellites by 5%, a constellation of large commercial satellites by 11%, and a constellation of factory built satellites by 26% from 7.6billionto7.6 billion to 9.57 billion. Based upon these facts, the NASA Marshall Space Flight Center (MSFC) Advanced Concepts Office (ACO) performed an architecture study on Small Orbital Debris Active Removal (SODAR) using a space-based nonweapons- class laser satellite for LEO debris removal. The goal of the SODAR study was to determine the ability of a space-based laser system to remove the most pieces of debris (1 cm to 10 cm, locations unknown), in the shortest amount of time, with the fewest number of spacecraft. The ESA developed MASTER2005 orbital debris model was used to probabilistically classify the future debris environment including impact velocity, magnitude, and directionality. The study ground rules and assumptions placed the spacecraft into a high inclination Low Earth Orbit at 800 km as an initial reference point. The architecture study results found that a spacecraft with an integrated forward-firing laser is capable of reducing the small orbital debris flux within a 60 to 100 km orbital shell by a significant amount within the one spacecraft's operational lifetime. The technology developments required for such an architecture to be successfully employed are: 1) A pico-pulsed, space qualified laser and 2) The ability to detect and track a small LEO small debris object from a space based platform. Therefore, a conceptual design for a demonstration satellite to showcase the ability to detect and track small orbital debris was complete

    Two electrons in an external oscillator potential: hidden algebraic structure

    Full text link
    It is shown that the Coulomb correlation problem for a system of two electrons (two charged particles) in an external oscillator potential possesses a hidden sl2sl_2-algebraic structure being one of recently-discovered quasi-exactly-solvable problems. The origin of existing exact solutions to this problem, recently discovered by several authors, is explained. A degeneracy of energies in electron-electron and electron-positron correlation problems is found. It manifests the first appearence of hidden sl2sl_2-algebraic structure in atomic physics.Comment: 7 pages (plus one figure avaliable via direct request), LaTeX, Preprint IFUNAM FT 94-4

    Exact Drude weight for the one-dimensional Hubbard model at finite temperatures

    Full text link
    The Drude weight for the one-dimensional Hubbard model is investigated at finite temperatures by using the Bethe ansatz solution. Evaluating finite-size corrections to the thermodynamic Bethe ansatz equations, we obtain the formula for the Drude weight as the response of the system to an external gauge potential. We perform low-temperature expansions of the Drude weight in the case of half-filling as well as away from half-filling, which clearly distinguish the Mott-insulating state from the metallic state.Comment: 9 pages, RevTex, To appear in J. Phys.

    Findings from NASA's 2015-2017 Electric Sail Investigations

    Get PDF
    Electric Sail (E-Sail) propulsion systems will enable scientific spacecraft to obtain velocities of up to 10 astronomical units per year without expending any on-board propellant. The E-Sail propulsion is created from the interaction of a spacecraft's positively charged multi-kilometer-length conductor/s with protons that are present in the naturally occurring hypersonic solar wind. The protons are deflected via natural electrostatic repulsion forces from the Debye sheath that is formed around a charged wire in space, and this deflection of protons creates thrust or propulsion in the opposite direction. It is envisioned that this E-Sail propulsion system can provide propulsion throughout the solar system and to the heliosphere and beyond. Consistent with the concept of a "sail," no propellant is needed as electrostatic repulsion interactions between the naturally occurring solar wind protons and a positively charged wire creates the propulsion. The basic principle on which the Electric Sail operates is the exchange of momentum between an "electric sail" and solar wind, which continually flows radially away from the sun at speeds ranging from 300 to 700 kilometers per second. The "sail" consists of an array of long, charged wires which extend radially outward 10 to 30 kilometers from a slowly rotating spacecraft. Momentum is transferred from the solar wind to the array through the deflection of the positively charged solar wind protons by a high voltage potential applied to the wires. The thrust generated by an E-Sail is proportional to the area of the sail, which is given by the product of the total length of the wires and the effective wire diameter. The wire is approximately 0.1 millimeters in diameter. However, the effective diameter is determined by the distance the applied electric potential penetrates into space around the wire (on the order of 10 meters at 1 astronomical unit). As a result, the effective area over which protons are repelled is proportional to the size of the region of electric potential, or the plasma sheath region, surround the wires of the array. A large sheath is, therefore, beneficial to the generation of thrust. However, this benefit must be balanced with the additional fact that electron collection is proportional to sheath size. Electrons collected by the wire array must be injected back into the solar wind in order to maintain the potential on the wires - which requires power. The primary power requirement for E-Sail operation is, therefore, also proportional to sheath size

    NASA's Electric Sail Propulsion System Investigations over the Past Three Years

    Get PDF
    Personnel from NASA's MSFC have been investigating the feasibility of an advanced propulsion system known as the Electric Sail for future scientific missions of exploration. This team initially won a NASA Space Technology Mission Directorate (STMD) Phase I NASA Innovative Advanced Concept (NIAC) award and then a two year follow-on Phase II NIAC award. This paper documents the findings from this three year investigation. An Electric sail propulsion system is a propellant-less and extremely fast propulsion system that takes advantage of the ions that are present in the solar wind to provide very rapid transit speeds whether to deep space or to the inner solar system. Scientific spacecraft could arrive to Pluto in ~5 years, to the boundary of the solar system in ten to twelve years vs. thirty five plus years it took the Voyager spacecraft. The team's recent focused activities are: 1) Developing a Particle in Cell (PIC) numeric engineering model from the experimental data collected at MSFC's Solar Wind Facility on the interaction between simulated solar wind interaction with a charged bare wire that can be applied to a variety of missions, 2) The development of the necessary tether deployers/tethers to enable successful deployment of multiple, multi km length bare tethers, 3) Determining the different missions that can be captured from this revolutionary propulsion system 4) Conceptual designs of spacecraft to reach various destinations whether to the edge of the solar system, or as Heliophysics sentinels around the sun, or to trips to examine a multitude of asteroids These above activities, once demonstrated analytically, will require a technology demonstration mission (~2021 to 2023) to demonstrate that all systems work together seamlessly before a Heliophysics Electrostatic Rapid Transit System (HERTS) could be given the go-ahead. The proposed demonstration mission will require that a small spacecraft must first travel to cis-lunar space as the Electric Sail must be outside of Earth's Magnetic fields to produce thrust. The paper will outline what was done over the past three years from performing various plasma chamber tests to obtain data for the PIC model development, investigation of tether material trades, and conceptual designs of proposed spacecraft

    NASA Innovative Advanced Concepts (NIAC): Heliopause Electrostatic Rapid Transit System (HERTS), Final Report

    Get PDF
    This report represents a summary of the study conducted under NASA Innovative Concept study contract number 14-NIAC14B-0075. The report provides a summary of the results of all contracted tasks and provides a suggested roadmap for continued development. The effort was collaborated with the Finnish Metrological Institute on an unfunded basis and the results of that coordination are reported herein. The Heliopause Electrostatic Rapid Transit System (HERTS) provides a flexible and enabling technology that can accelerate a spacecraft to velocities that allow travel times on the order of a decade for reaching the Heliopause; a feat that took the Voyager spacecraft(s) over 30 years to perform. The propulsion system concept being described is faster than any current propulsion system underdevelopment by NASA. The report describes the mission, the propulsion concept, and solar system trajectories. It also provides a comparison to the current state of the art in advanced propulsion concepts
    • …
    corecore