3 research outputs found

    Hybrid Multicast/Unicast Design in NOMA-based Vehicular Caching System

    Full text link
    In this paper, we investigate a hybrid multicast/unicast scheme for a multiple-input single-output cache-aided non-orthogonal multiple access (NOMA) vehicular scenario in the face of rapidly fluctuating vehicular wireless channels. Considering a more practical situation, imperfect channel state information is taking into account. In this paper, we formulate an optimization problem to maximize the unicast sum rate under the constraints of the peak power, the peak backhaul, the minimum unicast rate, and the maximum multicast outage probability. To solve the formulated non-convex problem, a lower bound relaxation method is proposed, which enables a division of the original problem into two convex sub-problems. Computer simulations show that the proposed caching-aided NOMA is superior to the orthogonal multiple access counterpart

    Deep Reinforcement Learning Based Relay Selection in Intelligent Reflecting Surface Assisted Cooperative Networks

    Full text link
    This paper proposes a deep reinforcement learning (DRL) based relay selection scheme for cooperative networks with the intelligent reflecting surface (IRS). We consider a practical phase-dependent amplitude model in which the IRS reflection amplitudes vary with the discrete phase-shifts. Furthermore, we apply the relay selection to reduce the signal loss over distance in IRS-assisted networks. To solve the complicated problem of joint relay selection and IRS reflection coefficient optimization, we introduce DRL to learn from the environment to obtain the solution and reduce the computational complexity. Simulation results show that the throughput is significantly improved with the proposed DRL-based algorithm compared to random relay selection and random reflection coefficients methods

    Receive Quadrature Reflecting Modulation for RIS-Empowered Wireless Communications

    Full text link
    In this paper, we propose a novel reconfigurable intelligent surface (RIS)-based modulation scheme, named RIS-aided receive quadrature reflecting modulation (RIS-RQRM), by resorting to the concept of spatial modulation. In RIS-RQRM, the whole RIS is virtually partitioned into two halves to create signals with only in-phase (I-) and quadrature (Q-) components, respectively, and each half forms a beam to a receive antenna whose index carries the bit information. Furthermore, we design a low-complexity and non-coherent detector for RIS-RQRM, which measures the maximum power and polarities of the I- and Q- components of the received signals. Approximate bit error rate (BER) expressions are derived for RIS-RQRM over Rician fading channels. Simulation results show that RIS-RQRM outperforms the existing counterpart without I/Q index modulation in terms of BER in the low signal-to-noise ratio region
    corecore