41 research outputs found

    A Superconducting Instability in the Infinite-U Anderson Lattice in the Presence of Crystal Electric Fields

    Full text link
    We report evidence of a superconducting instability (of T1gT_{1g} symmetry) in the infinite-U Anderson lattice in the presence of crystal fields of cubic symmetry. We assume a lattice of 4f4f sites, each with a total angular momentum of J=5/2J=5/2 that is split by crystal fields into a low-lying doublet of Γ7\Gamma_7 symmetry and an excited quartet of Γ8\Gamma_8 symmetry. Slave Bosons on the 4f4f sites create and destroy 4f04f^0 configurations and Lagrange multipliers at each 4f4f site enforce the occupancy constraint due to the infinite Coulomb repulsion. Quasiparticle interactions are due to exchange of 4f4f density fluctuations, which are represented by fluctuations in the slave Bosons and Lagrange multipliers. We use the so-called analytic tetrahedron method to calculate the dressed (to order 1/N) Boson Green functions. In weak couping, the exchange of the dressed Bosons gives rise to a superconducting instability of T1gT_{1g}, xy(x2y2)xy(x^2-y^2), symmetry. The A1gA_{1g}, ``s-wave'', channel has strongly repulsive interactions and hence no pairing instability. The T2gT_{2g} channel exhibits weakly repulsive interactions. Average quasiparticle interactions in the EgE_g, x2y2x^2-y^2, 3z2r23z^2-r^2, channel fluctuate strongly as a function of the number of tetrahedra used to calculate the Bosonic Green functions,Comment: 66 pages+ 17 postscript figures, LATE

    Addition of elotuzumab to lenalidomide and dexamethasone for patients with newly diagnosed, transplantation ineligible multiple myeloma (ELOQUENT-1): an open-label, multicentre, randomised, phase 3 trial

    Get PDF
    corecore