228 research outputs found

    Origin of broad polydispersion in functionalized dendrimers and its effects on cancer cell binding affinity

    Full text link
    Nanoparticles with multiple ligands have been proposed for use in nanomedicine. The multiple targeting ligands on each nanoparticle can bind to several locations on a cell surface facilitating both drug targeting and uptake. Experiments show that the distribution of conjugated ligands is unexpectedly broad, and the desorption rate appears to depends exponentially upon the mean number of attached ligands. These two findings are explained with a model in which ligands conjugate to the nanoparticle with a positive cooperativity of ≈4kT\approx 4kT, and that nanoparticles bound to a surface by multiple bonds are permanently affixed. This drives new analysis of the data, which confirms that there is only one time constant for desorption, that of a nanoparticle bound to the surface by a single bond.Comment: 4 pages, with 6 figure

    A Facile Strategy for In Situ Core-Template-Functionalizing Siliceous Hollow Nanospheres for Guest Species Entrapment

    Get PDF
    The shell wall-functionalized siliceous hollow nanospheres (SHNs) with functional molecules represent an important class of nanocarriers for a rich range of potential applications. Herein, a self-templated approach has been developed for the synthesis of in situ functionalized SHNs, in which the biocompatible long-chain polycarboxylates (i.e., polyacrylate, polyaspartate, gelatin) provide the framework for silica precursor deposition by simply controlling chain conformation with divalent metal ions (i.e., Ca2+, Sr2+), without the intervention of any external templates. Metal ions play crucial roles in the formation of organic vesicle templates by modulating the long chains of polymers and preventing them from separation by washing process. We also show that, by in situ functionalizing the shell wall of SHNs, it is capable of entrapping nearly an eightfold quantity of vitamin Bc in comparison to the bare bulk silica nanospheres. These results confirm the feasibility of guest species entrapment in the functionalized shell wall, and SHNs are effective carriers of guest (bio-)molecules potentially for a variety of biomedical applications. By rationally choosing the functional (self-templating) molecules, this concept may represent a general strategy for the production of functionalized silica hollow structures

    Elucidation of the tumoritropic principle of hypericin

    Get PDF
    Hypericin is a potent agent in the photodynamic therapy of cancers. To better understand its tumoritropic behaviour, we evaluated the major determinants of the accumulation and dispersion of hypericin in subcutaneously growing mouse tumours. A rapid exponential decay in tumour accumulation of hypericin as a function of tumour weight was observed for each of the six tumour models investigated, and a similar relationship was found between tumour blood flow and tumour weight. Moreover, there was a close correlation between the higher hypericin uptake in RIF-1 tumours compared to R1 tumours and tumour vessel permeability. To define the role of lipoproteins in the transport of hypericin through the interstitial space, we performed a visual and quantitative analysis of the colocalisation of hypericin and DiOC18-labelled lipoproteins in microscopic fluorescent overlay images. A coupled dynamic behaviour was found early after injection (normalised fluorescence intensity differences were on the whole less than 10%), while a shifted pattern in localisation of hypericin and DiOC18 was seen after 24 h, suggesting that during its migration through the tumour mass, hypericin is released from the lipoprotein complex. In conclusion, we were able to show that the tumour accumulation of hypericin is critically determined by a combination of biological (blood flow, vessel permeability) and physicochemical elements (affinity for interstitial constituents)

    Irinotecan plus raltitrexed vs raltitrexed alone in patients with gemcitabine-pretreated advanced pancreatic adenocarcinoma

    Get PDF
    There is no established second-line treatment for advanced pancreatic cancer after gemcitabine failure. In view of the urgent need for such therapy, and since preclinical and phase I clinical data suggest an encouraging, potentially synergistic activity between raltitrexed and irinotecan, the present randomised phase II study was initiated. A total of 38 patients with metastatic pancreatic adenocarcinoma, who progressed while receiving or within 6 months after discontinuation of palliative first-line chemotherapy with gemcitabine, were enrolled in this study. They were randomised to 3-weekly courses of raltitrexed 3 mg m−2 on day 1 (arm A) or irinotecan 200 mg m−2 on day 1 plus raltitrexed 3 mg m−2 on day 2 (arm B). The primary study end point was objective response, secondary end points included progression-free survival (PFS) and overall survival (OS), as well as clinical benefit response in symptomatic patients (n=28). In the combination arm, the IRC-confirmed objective response rate was 16% (three out of 19 patients had a partial remission; 95% CI, 3–40%), which was clearly superior to that in the comparator/control arm with raltitrexed alone, in which no response was obtained. Therefore, the trial was already stopped at the first stage of accrual. Also, the secondary study end points, median PFS (2.5 vs 4.0 months), OS (4.3 vs 6.5 months), and clinical benefit response (8 vs 29%) were superior in the combination arm. The objective and subjective benefits of raltitrexed+irinotecan were not negated by severe, clinically relevant treatment-related toxicities: gastrointestinal symptoms (42 vs 68%), partial alopecia (0 vs 42%), and cholinergic syndrome (0 vs 21%) were more commonly noted in arm B; however, grade 3 adverse events occurred in only three patients in both treatment groups. Our data indicate that combined raltitrexed+irinotecan seems to be an effective salvage regimen in patients with gemcitabine-pretreated pancreatic cancer. The superior response activity, PFS and OS (when compared to raltitrexed), as well as its tolerability and ease of administration suggest that future trials with this combination are warranted

    The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs

    Get PDF
    The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-threat agents, and photoactivatable platinum(IV) complexes. Nanoparticles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations, including supramolecular self-assembled structures, proteins, peptides, metal–organic frameworks, and coordination polymers, will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also will reflect our optimism that the next generation of approved platinum cancer drugs is about to arrive.National Cancer Institute (U.S.) (CA034992

    Synergistic activity of troxacitabine (Troxatylâ„¢) and gemcitabine in pancreatic cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gemcitabine, a deoxycytidine nucleoside analog, is the current standard chemotherapy used as first-line treatment for patients with locally advanced or metastatic cancer of the pancreas, and extends life survival by 5.7 months. Advanced pancreatic cancer thus remains a highly unmet medical need and new therapeutic agents are required for this patient population. Troxacitabine (Troxatylâ„¢) is the first unnatural L-nucleoside analog to show potent preclinical antitumor activity and is currently under clinical investigation. Troxacitabine was recently evaluated as a first-line therapy in 54 patients with advanced adenocarcinoma of the pancreas and gave comparable overall results to those reported with gemcitabine in recently published randomized trials.</p> <p>Methods</p> <p>The human pancreatic adenocarcinoma cell lines, AsPC-1, Capan-2, MIA PaCa-2 and Panc-1, were exposed to troxacitabine or gemcitabine alone or in combination, for 72 h, and the effects on cell growth were determined by electronic particle counting. Synergistic efficacy was determined by the isobologram and combination-index methods of Chou and Talalay. Mechanistic studies addressed incorporation of troxacitabine into DNA and intracellular levels of troxacitabine and gemcitabine metabolites. For <it>in vivo </it>studies, we evaluated the effect of both drugs, alone and in combination, on the growth of established human pancreatic (AsPC-1) tumors implanted subcutaneously in nude mice. Statistical analysis was calculated by a one-way ANOVA with Dunnett as a post-test and the two-tailed unpaired <it>t </it>test using GraphPad prism software.</p> <p>Results</p> <p>Synergy, evaluated using the CalcuSyn Software, was observed in all four cell-lines at multiple drug concentrations resulting in combination indices under 0.7 at Fa of 0.5 (50% reduction of cell growth). The effects of drug exposures on troxacitabine and gemcitabine nucleotide pools were analyzed, and although gemcitabine reduced phosphorylation of troxacitabine when cells were exposed at equal drug concentrations, there was no effect on phosphorylated pools at drug combinations that were synergistic. The amount of troxacitabine incorporated into DNA was also not affected by the presence of gemcitabine. <it>In vivo </it>testing against a human pancreatic (AsPC-1) xenograft mouse tumor model indicated that both drugs were more than additive at well-tolerated doses and schedule. The biological basis for this synergy is unclear as we did not observe changes in apoptosis, DNA repair, troxacitabine incorporation into DNA or troxacitabine metabolism in the presence of gemcitabine.</p> <p>Conclusion</p> <p>These data, together with phase I clinical data showing tolerability of both agents when combined, suggest combination therapy with troxacitabine and gemcitabine warrants further evaluation in advanced pancreatic cancer patients.</p
    • …
    corecore