28 research outputs found

    Noninvasive Liquid Diet Delivery of Stable Isotopes into Mouse Models for Deep Metabolic Network Tracing

    Get PDF
    Delivering isotopic tracers for metabolic studies in rodents without overt stress is challenging. Current methods achieve low label enrichment in proteins and lipids. Here, we report noninvasive introduction of 13C6-glucose via a stress-free, ad libitum liquid diet. Using NMR and ion chromatography-mass spectrometry, we quantify extensive 13C enrichment in products of glycolysis, the Krebs cycle, the pentose phosphate pathway, nucleobases, UDP-sugars, glycogen, lipids, and proteins in mouse tissues during 12 to 48 h of 13C6-glucose feeding. Applying this approach to patient-derived lung tumor xenografts (PDTX), we show that the liver supplies glucose-derived Gln via the blood to the PDTX to fuel Glu and glutathione synthesis while gluconeogenesis occurs in the PDTX. Comparison of PDTX with ex vivo tumor cultures and arsenic-transformed lung cells versus xenografts reveals differential glucose metabolism that could reflect distinct tumor microenvironment. We further found differences in glucose metabolism between the primary PDTX and distant lymph node metastases

    Converting a breast cancer microarray signature into a high-throughput diagnostic test

    Get PDF
    BACKGROUND: A 70-gene tumor expression profile was established as a powerful predictor of disease outcome in young breast cancer patients. This profile, however, was generated on microarrays containing 25,000 60-mer oligonucleotides that are not designed for processing of many samples on a routine basis. RESULTS: To facilitate its use in a diagnostic setting, the 70-gene prognosis profile was translated into a customized microarray (MammaPrint) containing a reduced set of 1,900 probes suitable for high throughput processing. RNA of 162 patient samples from two previous studies was subjected to hybridization to this custom array to validate the prognostic value. Classification results obtained from the original analysis were then compared to those generated using the algorithms based on the custom microarray and showed an extremely high correlation of prognosis prediction between the original data and those generated using the custom mini-array (p < 0.0001). CONCLUSION: In this report we demonstrate for the first time that microarray technology can be used as a reliable diagnostic tool. The data clearly demonstrate the reproducibility and robustness of the small custom-made microarray. The array is therefore an excellent tool to predict outcome of disease in breast cancer patients

    Circulating Fatty Acids Associated with Advanced Liver Fibrosis and Hepatocellular Carcinoma in South Texas Hispanics

    Get PDF
    Background: Hispanics in South Texas have high rates of hepatocellular carcinoma (HCC) and nonalcoholic fatty liver disease (NAFLD). Liver fibrosis severity is the strongest predictive factor of NAFLD progression to HCC. We examined the association between free fatty acids (FA) and advanced liver fibrosis or HCC in this population. Methods: We quantified 45 FAs in plasma of 116 subjects of the Cameron County Hispanic Cohort, 15 Hispanics with HCC, and 56 first/second-degree relatives of Hispanics with HCC. Liver fibrosis was assessed by FibroScan. Results: Advanced liver fibrosis was significantly associated with low expression of very long chain (VLC) saturated FAs (SFA), odd chain SFAs, and VLC n-3 polyunsaturated FAs [PUFA; AOR; 95% confidence interval (CI), 10.4 (3.7-29.6); P \u3c 0.001; 5.7 (2.2-15.2); P \u3c 0.001; and 3.7 (1.5-9.3); P = 0.005]. VLC n3-PUFAs significantly improved the performance of the noninvasive markers for advanced fibrosis - APRI, FIB-4, and NFS. Plasma concentrations of VLC SFAs and VLC n-3 PUFAs were further reduced in patients with HCC. Low concentrations of these FAs were also observed in relatives of patients with HCC and in subjects with the PNPLA3 rs738409 homozygous genotype. Conclusions: Low plasma concentrations of VLC n-3 PUFAs and VLC SFAs were strongly associated with advanced liver fibrosis and HCC in this population. Genetic factors were associated with low concentrations of these FAs as well. Impact: These results have implications in identifying those at risk for liver fibrosis progression to HCC and in screening this population for advanced fibrosis. They also prompt the evaluation of VLC n-3 PUFA or VLC SFA supplementation to prevent cirrhosis and HCC

    Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment

    Full text link

    Whole gel processing procedure for GeLC-MS/MS based proteomics

    Get PDF
    BACKGROUND: SDS-PAGE followed by in-gel digestion (IGD) is a popular workflow in mass spectrometry-based proteomics. In GeLC-MS/MS, a protein lysate of a biological sample is separated by SDS-PAGE and each gel lane is sliced in 5–20 slices which, after IGD, are analyzed by LC-MS/MS. The database search results for all slices of a biological sample are combined yielding global protein identification and quantification for each sample. In large scale GeLC-MS/MS experiments the manual processing steps including washing, reduction and alkylation become a bottleneck. Here we introduce the whole gel (WG) procedure where, prior to gel slice cutting, the processing steps are carried out on the whole gel. RESULTS: In two independent experiments human HCT116 cell lysate and mouse tumor tissue lysate were separated by 1D SDS PAGE. In a back to back comparison of the IGD procedure and the WG procedure, both protein identification (>80% overlap) and label-free protein quantitation (R(2)=0.94) are highly similar between procedures. Triplicate analysis of the WG procedure of both HCT116 cell lysate and formalin-fixed paraffin embedded (FFPE) tumor tissue showed identification reproducibility of >88% with a CV<20% on protein quantitation. CONCLUSIONS: The whole gel procedure allows for reproducible large-scale differential GeLC-MS/MS experiments, without a prohibitive amount of manual processing and with similar performance as conventional in-gel digestion. This procedure will especially enable clinical proteomics for which GeLC-MS/MS is a popular workflow and sample numbers are relatively high

    Secretome proteomics reveals candidate non-invasive biomarkers of BRCA1 deficiency in breast cancer

    Get PDF
    Breast cancer arising in female BRCA1 mutation carriers is characterized by an aggressive phenotype and early age of onset. We performed tandem mass spectrometry-based proteomics of secretomes and exosome-like extracellular vesicles from BRCA1-deficient and BRCA1-proficient murine breast tumor models to identify extracellular protein biomarkers, which can be used as an adjunct to current diagnostic modalities in patients with BRCA1-deficient breast cancer. We identified 2,107 proteins, of which 215 were highly enriched in the BRCA1-deficient secretome. We demonstrated that BRCA1-deficient secretome proteins could cluster most human BRCA1-and BRCA2-related breast carcinomas at the transcriptome level. Topoisomerase I (TOP1) and P-cadherin (CDH3) expression was investigated by immunohistochemistry on tissue microarrays of a large panel of 253 human breast carcinomas with and without BRCA1/2 mutations. We showed that expression of TOP1 and CDH3 was significantly increased in human BRCA1-related breast carcinomas relative to sporadic cases (p = 0.002 and p <0.001, respectively). Multiple logistic regression showed that TOP1 (adjusted odds ratio [OR] 3.75; 95% confidence interval [95% CI], 1.85-7.71, p <0.001) as well as CDH3 positivity (adjusted OR 2.45; 95% CI, 1.08-5.49, p = 0.032) were associated with BRCA1/2-related breast carcinomas after adjustment for triple-negative phenotype and age. In conclusion, proteome profiling of secretome using murine breast tumor models is a powerful strategy to identify non-invasive candidate biomarkers of BRCA1-deficient breast cancer. We demonstrate that TOP1 and CDH3 are closely associated to BRCA1-deficient breast cancer. These data merit further investigation for early detection of tumors arising in BRCA1 mutation carriers
    corecore