534 research outputs found

    Cytoplasmic Ca2+ oscillations evoked by acetylcholine or intracellular infusion of inositol trisphosphate or Ca2+ can be inhibited by internal Ca2+

    Get PDF
    AbstractIn single internally perfused mouse pancreatic acinar cells, changes in the free intracellular Ca2+ concentration ([Ca2+]i) were monitored by measuring the Ca2+-dependent transmembrane Cl− current under voltage-clamp conditions. Cytoplasmic Ca2+ oscillations were induced by external acetylcholine (ACh) application, internal infusion of inositol (1,4,5) trisphosphate or its non-metabolizable analogue inositol trisphosphorothioate or by intracellular Ca2+ infusion. Such [Ca2+]i oscillations could be rapidly inhibited by external application of the Ca2+ ionophore ionomycin (10–100 nM). Cytoplasmic Ca2+ oscillations could also be evoked by external caffeine (1 mM) application when the internal perfusion solution did not contain any Ca2+ chelator. In such cases intracellular Ca2+ infusion transiently abolished the [Ca2+]i oscillations. We conclude that although Ca2+-induced Ca2+ release is the cause of the ACh-evoked [Ca2+]i oscillations, there is also a negative feed-back since Ca2+ can inhibit Ca2+ release initiated by Ca2+

    Experimental verification of a fully inseparable tripartite continuous-variable state

    Full text link
    A continuous-variable tripartite entangled state is experimentally generated by combining three independent squeezed vacuum states and the variances of its relative positions and total momentum are measured. We show that the measured values violate the separability criteria based on the sum of these quantities and prove the full inseparability of the generated state.Comment: 5 pages, 4 figure

    All-optical generation of states for "Encoding a qubit in an oscillator"

    Full text link
    Both discrete and continuous systems can be used to encode quantum information. Most quantum computation schemes propose encoding qubits in two-level systems, such as a two-level atom or an electron spin. Others exploit the use of an infinite-dimensional system, such as a harmonic oscillator. In "Encoding a qubit in an oscillator" [Phys. Rev. A 64 012310 (2001)], Gottesman, Kitaev, and Preskill (GKP) combined these approaches when they proposed a fault-tolerant quantum computation scheme in which a qubit is encoded in the continuous position and momentum degrees of freedom of an oscillator. One advantage of this scheme is that it can be performed by use of relatively simple linear optical devices, squeezing, and homodyne detection. However, we lack a practical method to prepare the initial GKP states. Here we propose the generation of an approximate GKP state by using superpositions of optical coherent states (sometimes called "Schr\"odinger cat states"), squeezing, linear optical devices, and homodyne detection.Comment: 4 pages, 3 figures. Submitted to Optics Letter

    Analyzing power for the proton elastic scattering from neutron-rich 6He nucleus

    Full text link
    Vector analyzing power for the proton-6He elastic scattering at 71 MeV/nucleon has been measured for the first time, with a newly developed polarized proton solid target working at low magnetic field of 0.09 T. The results are found to be incompatible with a t-matrix folding model prediction. Comparisons of the data with g-matrix folding analyses clearly show that the vector analyzing power is sensitive to the nuclear structure model used in the reaction analysis. The alpha-core distribution in 6He is suggested to be a possible key to understand the nuclear structure sensitivity.Comment: 5 pages, 3 figures, accepted for publication as a Rapid Communication in Physical Review

    On the distillation and purification of phase-diffused squeezed states

    Get PDF
    Recently it was discovered that non-Gaussian decoherence processes, such as phase-diffusion, can be counteracted by purification and distillation protocols that are solely built on Gaussian operations. Here, we make use of this experimentally highly accessible regime, and provide a detailed experimental and theoretical analysis of several strategies for purification/distillation protocols on phase-diffused squeezed states. Our results provide valuable information for the optimization of such protocols with respect to the choice of the trigger quadrature, the trigger threshold value and the probability of generating a distilled state
    corecore