21,682 research outputs found
Thermal Casimir drag in fluctuating classical fields
A uniformly moving inclusion which locally suppresses the fluctuations of a
classical thermally excited field is shown to experience a drag force which
depends on the dynamics of the field. It is shown that in a number of cases the
linear friction coefficient is dominated by short distance fluctuations and
takes a very simple form. Examples where this drag can occur are for stiff
objects, such as proteins, nonspecifically bound to more flexible ones such as
polymers and membranes.Comment: 4 pages RevTex, 2 figure
The Impacts of North American BSE Discoveries on U.S. and Canadian Cattle Prices
Demand and Price Analysis, Research and Development/Tech Change/Emerging Technologies,
Spin-Dependent Hubbard Model and a Quantum Phase Transition in Cold Atoms
We describe an experimental protocol for introducing spin-dependent lattice
structure in a cold atomic fermi gas using lasers. It can be used to realize
Hubbard models whose hopping parameters depend on spin and whose interaction
strength can be controlled with an external magnetic field. We suggest that
exotic superfluidities will arise in this framework. An especially interesting
possibility is a class of states that support coexisting superfluid and normal
components, even at zero temperature. The quantity of normal component varies
with external parameters. We discuss some aspects of the quantum phase
transition that arises at the point where it vanishes.Comment: 9 pages, 7 figures; added/corrected references in [11] and [44
Gas Sorption and Luminescence Properties of a Terbium(III)-Phosphine Oxide Coordination Material with Two-Dimensional Pore Topology
The structure, stability, gas sorption properties and luminescence behaviour of a new lanthanide-phosphine oxide coordination material are reported. The polymer PCM-15 is based on Tb(III) and tris(p-carboxylated) triphenylphosphine oxide and has a 5,5-connected net topology. It exhibits an infinite three-dimensional structure that incorporates an open, two-dimensional pore structure. The material is thermally robust and remains crystalline under high vacuum at 150 degrees C. When desolvated, the solid has a CO2 BET surface area of 1187 m(2) g(-1) and shows the highest reported uptake of both O-2 and H-2 at 77 K and 1 bar for a lanthanide-based coordination polymer. Isolated Tb(III) centres in the as-synthesized polymer exhibit moderate photoluminescence. However, upon removal of coordinated OH2 ligands, the luminescence intensity was found to approximately double; this process was reversible. Thus, the Tb(III) centre was used as a probe to detect directly the desolvation and resolvation of the polymer.Welch Foundation F-1738, F-1631National Science Foundation 0741973, CHE-0847763Chemistr
Analytic thermodynamics and thermometry of Gaudin-Yang Fermi gases
We study the thermodynamics of a one-dimensional attractive Fermi gas (the
Gaudin-Yang model) with spin imbalance. The exact solution has been known from
the thermodynamic Bethe ansatz for decades, but it involves an infinite number
of coupled nonlinear integral equations whose physics is difficult to extract.
Here the solution is analytically reduced to a simple, powerful set of four
algebraic equations. The simplified equations become universal and exact in the
experimental regime of strong interaction and relatively low temperature. Using
the new formulation, we discuss the qualitative features of finite-temperature
crossover and make quantitative predictions on the density profiles in traps.
We propose a practical two-stage scheme to achieve accurate thermometry for a
trapped spin-imbalanced Fermi gas.Comment: 4 pages, 2 figures; published version (v2
A comprehensive study of electric, thermoelectric and thermal conductivities of Graphene with short range unitary and charged impurities
Motivated by the experimental measurement of electrical and hall
conductivity, thermopower and Nernst effect, we calculate the longitudinal and
transverse electrical and heat transport in graphene in the presence of unitary
scatterers as well as charged impurities. The temperature and carrier density
dependence in this system display a number of anomalous features that arise due
to the relativistic nature of the low energy fermionic degrees of freedom. We
derive the properties in detail including the effect of unitary and charged
impurities self-consistently, and present tables giving the analytic
expressions for all the transport properties in the limit of small and large
temperature compared to the chemical potential and the scattering rates. We
compare our results with the available experimental data. While the qualitative
variations with temperature and density of carriers or chemical potential of
all transport properties can be reproduced, we find that a given set of
parameters of the impurities fits the Hall conductivity, Thermopower and the
Nernst effect quantitatively but cannot fit the conductivity quantitatively. On
the other hand a single set of parameters for scattering from Coulomb
impurities fits conductivity, hall resistance and thermopower but not Nernst
A magnetized torus for modeling Sgr A* millimeter images and spectra
Context. The supermassive black hole, Sagittarius (Sgr) A*, in the centre of
our Galaxy has the largest angular size in the sky among all astrophysical
black holes. Its shadow, assuming no rotation, spans ~ 50 microarcsec.
Resolving such dimensions has long been out of reach for astronomical
instruments until a new generation of interferometers being operational during
this decade. Of particular interest is the Event Horizon Telescope (EHT) with
resolution ~ 20 microarcsec in the millimeter-wavelength range 0.87 mm - 1.3
mm. Aims. We investigate the ability of the fully general relativistic
Komissarov (2006) analytical magnetized torus model to account for observable
constraints at Sgr A* in the centimeter and millimeter domains. The impact of
the magnetic field geometry on the observables is also studied. Methods. We
calculate ray-traced centimeter- and millimeter-wavelength synchrotron spectra
and images of a magnetized accretion torus surrounding the central black hole
in Sgr A*. We assume stationarity, axial symmetry, constant specific angular
momentum and polytropic equation of state. A hybrid population of thermal and
non-thermal electrons is considered. Results. We show that the torus model is
capable of reproducing spectral constraints in the millimeter domain, and in
particular in the observable domain of the EHT. However, the torus model is not
yet able to fit the centimeter spectrum. 1.3 mm images at high inclinations are
in agreement with observable constraints. Conclusions. The ability of the torus
model to account for observations of Sgr A* in the millimeter domain is
interesting in the perspective of the future EHT. Such an analytical model
allows very fast computations. It will thus be a suitable test bed for
investigating large domains of physical parameters, as well as non-black-hole
compact object candidates and alternative theories of gravity.Comment: Major changes wrt the June 2014 version. Accepted by A&
- …