6,140 research outputs found

    Studies of neighbouring group interaction in ortho-substituted nitrobenzenes

    Get PDF

    A statistical study of the global structure of the ring current

    Get PDF
    [1] In this paper we derive the average configuration of the ring current as a function of the state of the magnetosphere as indicated by the Dst index. We sort magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) by spatial location and by the Dst index in order to produce magnetic field maps. From these maps we calculate local current systems by taking the curl of the magnetic field. We find both the westward (outer) and the eastward (inner) components of the ring current. We find that the ring current intensity varies linearly with Dst as expected and that the ring current is asymmetric for all Dst values. The azimuthal peak of the ring current is located in the afternoon sector for quiet conditions and near midnight for disturbed conditions. The ring current also moves closer to the Earth during disturbed conditions. We attempt to recreate the Dst index by integrating the magnetic perturbations caused by the ring current. We find that we need to multiply our computed disturbance by a factor of 1.88 ± 0.27 and add an offset of 3.84 ± 4.33 nT in order to get optimal agreement with Dst. When taking into account a tail current contribution of roughly 25%, this agrees well with our expectation of a factor of 1.3 to 1.5 based on a partially conducting Earth. The offset that we have to add does not agree well with an expected offset of approximately 20 nT based on solar wind pressure

    Ion observations from geosynchronous orbit as a proxy for ion cyclotron wave growth during storm times

    Get PDF
    [1] There is still much to be understood about the processes contributing to relativistic electron enhancements and losses in the radiation belts. Wave particle interactions with both whistler and electromagnetic ion cyclotron (EMIC) waves may precipitate or accelerate these electrons. This study examines the relation between EMIC waves and resulting relativistic electron flux levels after geomagnetic storms. A proxy for enhanced EMIC waves is developed using Los Alamos National Laboratory Magnetospheric Plasma Analyzer plasma data from geosynchronous orbit in conjunction with linear theory. In a statistical study using superposed epoch analysis, it is found that for storms resulting in net relativistic electron losses, there is a greater occurrence of enhanced EMIC waves. This is consistent with the hypothesis that EMIC waves are a primary mechanism for the scattering of relativistic electrons and thus cause losses of such particles from the magnetosphere

    Role of coronal mass ejections in the heliospheric Hale cycle

    Get PDF
    [1] The 11-year solar cycle variation in the heliospheric magnetic field strength can be explained by the temporary buildup of closed flux released by coronal mass ejections (CMEs). If this explanation is correct, and the total open magnetic flux is conserved, then the interplanetary-CME closed flux must eventually open via reconnection with open flux close to the Sun. In this case each CME will move the reconnected open flux by at least the CME footpoint separation distance. Since the polarity of CME footpoints tends to follow a pattern similar to the Hale cycle of sunspot polarity, repeated CME eruption and subsequent reconnection will naturally result in latitudinal transport of open solar flux. We demonstrate how this process can reverse the coronal and heliospheric fields, and we calculate that the amount of flux involved is sufficient to accomplish the reversal within the 11 years of the solar cycle

    Suprathermal electron isotropy in high-beta solar wind and its role in heat flux dropouts

    Get PDF
    [1] Time variations in plasma beta and a parameter which measures isotropy in suprathermal electron pitch angle distributions show a remarkably close correspondence throughout the solar wind. The finding implies that high-beta plasma, with its multiple magnetic holes and sharp field and plasma gradients, is conducive to electron pitch-angle scattering, which reduces heat flux from the Sun without field-line disconnection. Thus the finding impacts our understanding of signatures we use to determine magnetic topology in the heliosphere

    The trapping of equatorial magnetosonic waves in the Earth’s outer plasmasphere

    Get PDF
    Abstract We investigate the excitation and propagation of equatorial magnetosonic waves observed by the Van Allen Probes and describe evidence for a trapping mechanism for magnetosonic waves in the Earth\u27s plasmasphere. Intense equatorial magnetosonic waves were observed inside the plasmasphere in association with a pronounced proton ring distribution, which provides free energy for wave excitation. Instability analysis along the inbound orbit demonstrates that broadband magnetosonic waves can be excited over a localized spatial region near the plasmapause. The waves can subsequently propagate into the inner plasmasphere and remain trapped over a limited radial extent, consistent with the predictions of near-perpendicular propagation. By performing a similar analysis on another observed magnetosonic wave event, we demonstrate that magnetosonic waves can also be trapped within local density structures. We suggest that perpendicular wave propagation is important for explaining the presence of magnetosonic waves in the Earth\u27s plasmasphere at locations away from the generation region. Key Points Magnetosonic waves are excited by ion ring distributions near the plasmapauseMagnetosonic waves are trapped in a limited radial region in the plasmasphereMagnetosonic waves are modulated by local density structures

    The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations

    Get PDF
    [1] At the start of the Lunar Reconnaissance Orbiter mission in 2009, its Cosmic Ray Telescope for the Effects of Radiation instrument measured the radiation environment near the Moon during the recent deep solar minimum, when galactic cosmic rays (GCRs) were at the highest level observed during the space age. We present observations that show the combined effects of GCR primaries, secondary particles (“albedo”) created by the interaction of GCRs with the lunar surface, and the interactions of these particles in the shielding material overlying the silicon solid-state detectors of the Cosmic Ray Telescope for the Effects of Radiation. We use Geant4 to model the energy and angular distribution of the albedo particles, and to model the response of the sensor to the various particle species reaching the 50 kilometer altitude of the Lunar Reconnaissance Orbiter. Using simulations to gain insight into the observations, we are able to present preliminary energy-deposit spectra for evaluation of the radiation environment\u27s effects on other sensitive materials, whether biological or electronic, that would be exposed to a similar near-lunar environment

    Heliospheric plasma sheets

    Get PDF
    [1] As a high-beta feature on scales of hours or less, the heliospheric plasma sheet (HPS) encasing the heliospheric current sheet shows a high degree of variability. A study of 52 sector boundaries identified in electron pitch angle spectrograms in Wind data from 1995 reveals that only half concur with both high-beta plasma and current sheets, as required for an HPS. The remaining half lack either a plasma sheet or current sheet or both. A complementary study of 37 high-beta events reveals that only 5 contain sector boundaries while nearly all (34) contain local magnetic field reversals, however brief. We conclude that high-beta plasma sheets surround current sheets but that most of these current sheets are associated with fields turned back on themselves. The findings are consistent with the hypothesis that high-beta plasma sheets, both at and away from sector boundaries, are the heliospheric counterparts of the small coronal transients observed at the tips of helmet streamers, in which case the proposed mechanism for their release, interchange reconnection, could be responsible for the field inversions

    New measurements of total ionizing dose in the lunar environment

    Get PDF
    [1] We report new measurements of solar minimum ionizing radiation dose at the Moon onboard the Lunar Reconnaissance Orbiter (LRO) from June 2009 through May 2010. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on LRO houses a compact and highly precise microdosimeter whose design allows measurements of dose rates below 1 micro-Rad per second in silicon achieved with minimal resources (20 g, ∼250 milliwatts, and ∼3 bits/second). We envision the use of such a small yet accurate dosimeter in many future spaceflight applications where volume, mass, and power are highly constrained. As this was the first operation of the microdosimeter in a space environment, the goal of this study is to verify its response by using simultaneous measurements of the galactic cosmic ray ionizing environment at LRO, at L1, and with other concurrent dosimeter measurements and model predictions. The microdosimeter measured the same short timescale modulations in the galactic cosmic rays as the other independent measurements, thus verifying its response to a known source of minimum-ionizing particles. The total dose for the LRO mission over the first 333 days was only 12.2 Rads behind ∼130 mils of aluminum because of the delayed rise of solar activity in solar cycle 24 and the corresponding lack of intense solar energetic particle events. The dose rate in a 50 km lunar orbit was about 30 percent lower than the interplanetary rate, as one would expect from lunar obstruction of the visible sky
    corecore